Solved

Graph the Polar Equations of Conics
- r=93sinθr = \frac { 9 } { 3 - \sin \theta } \quad

Question 228

Multiple Choice

Graph the Polar Equations of Conics
- r=93sinθr = \frac { 9 } { 3 - \sin \theta } \quad Identify the directrix and vertices.
 Graph the Polar Equations of Conics - r = \frac { 9 } { 3 - \sin \theta } \quad  Identify the directrix and vertices.    A)  directrix: 9 unit(s)  below the pole at  x = 9  the pole at  \mathrm { y } = - 9  vertices:  \left( \frac { 9 } { 2 } , \frac { \pi } { 2 } \right)  , \left( \frac { 9 } { 4 } , \frac { 3 \pi } { 2 } \right)     B)  directrix: 9 unit(s)  to the right of vertices:  \left( \frac { 9 } { 2 } , \pi \right)  , \left( \frac { 9 } { 4 } , 0 \right)     C)  directrix: 9 unit(s)  to the left ofthe pole at  x = - 9  vertices:  \left( \frac { 9 } { 4 } , \pi \right)  , \left( \frac { 9 } { 2 } , 0 \right)     D)  directrix: 9 unit(s)  above the pole at  \mathrm { y } = 9  vertices:  \left( - \frac { 9 } { 4 } , \frac { 3 \pi } { 2 } \right)  , \left( \frac { 9 } { 2 } , \frac { 3 \pi } { 2 } \right)


A) directrix: 9 unit(s) below
the pole at x=9x = 9
the pole at y=9\mathrm { y } = - 9 vertices: (92,π2) ,(94,3π2) \left( \frac { 9 } { 2 } , \frac { \pi } { 2 } \right) , \left( \frac { 9 } { 4 } , \frac { 3 \pi } { 2 } \right)
 Graph the Polar Equations of Conics - r = \frac { 9 } { 3 - \sin \theta } \quad  Identify the directrix and vertices.    A)  directrix: 9 unit(s)  below the pole at  x = 9  the pole at  \mathrm { y } = - 9  vertices:  \left( \frac { 9 } { 2 } , \frac { \pi } { 2 } \right)  , \left( \frac { 9 } { 4 } , \frac { 3 \pi } { 2 } \right)     B)  directrix: 9 unit(s)  to the right of vertices:  \left( \frac { 9 } { 2 } , \pi \right)  , \left( \frac { 9 } { 4 } , 0 \right)     C)  directrix: 9 unit(s)  to the left ofthe pole at  x = - 9  vertices:  \left( \frac { 9 } { 4 } , \pi \right)  , \left( \frac { 9 } { 2 } , 0 \right)     D)  directrix: 9 unit(s)  above the pole at  \mathrm { y } = 9  vertices:  \left( - \frac { 9 } { 4 } , \frac { 3 \pi } { 2 } \right)  , \left( \frac { 9 } { 2 } , \frac { 3 \pi } { 2 } \right)
B) directrix: 9 unit(s) to the right of
vertices: (92,π) ,(94,0) \left( \frac { 9 } { 2 } , \pi \right) , \left( \frac { 9 } { 4 } , 0 \right)
 Graph the Polar Equations of Conics - r = \frac { 9 } { 3 - \sin \theta } \quad  Identify the directrix and vertices.    A)  directrix: 9 unit(s)  below the pole at  x = 9  the pole at  \mathrm { y } = - 9  vertices:  \left( \frac { 9 } { 2 } , \frac { \pi } { 2 } \right)  , \left( \frac { 9 } { 4 } , \frac { 3 \pi } { 2 } \right)     B)  directrix: 9 unit(s)  to the right of vertices:  \left( \frac { 9 } { 2 } , \pi \right)  , \left( \frac { 9 } { 4 } , 0 \right)     C)  directrix: 9 unit(s)  to the left ofthe pole at  x = - 9  vertices:  \left( \frac { 9 } { 4 } , \pi \right)  , \left( \frac { 9 } { 2 } , 0 \right)     D)  directrix: 9 unit(s)  above the pole at  \mathrm { y } = 9  vertices:  \left( - \frac { 9 } { 4 } , \frac { 3 \pi } { 2 } \right)  , \left( \frac { 9 } { 2 } , \frac { 3 \pi } { 2 } \right)
C) directrix: 9 unit(s) to the left ofthe pole at x=9x = - 9
vertices: (94,π) ,(92,0) \left( \frac { 9 } { 4 } , \pi \right) , \left( \frac { 9 } { 2 } , 0 \right)
 Graph the Polar Equations of Conics - r = \frac { 9 } { 3 - \sin \theta } \quad  Identify the directrix and vertices.    A)  directrix: 9 unit(s)  below the pole at  x = 9  the pole at  \mathrm { y } = - 9  vertices:  \left( \frac { 9 } { 2 } , \frac { \pi } { 2 } \right)  , \left( \frac { 9 } { 4 } , \frac { 3 \pi } { 2 } \right)     B)  directrix: 9 unit(s)  to the right of vertices:  \left( \frac { 9 } { 2 } , \pi \right)  , \left( \frac { 9 } { 4 } , 0 \right)     C)  directrix: 9 unit(s)  to the left ofthe pole at  x = - 9  vertices:  \left( \frac { 9 } { 4 } , \pi \right)  , \left( \frac { 9 } { 2 } , 0 \right)     D)  directrix: 9 unit(s)  above the pole at  \mathrm { y } = 9  vertices:  \left( - \frac { 9 } { 4 } , \frac { 3 \pi } { 2 } \right)  , \left( \frac { 9 } { 2 } , \frac { 3 \pi } { 2 } \right)
D) directrix: 9 unit(s) above
the pole at y=9\mathrm { y } = 9
vertices: (94,3π2) ,(92,3π2) \left( - \frac { 9 } { 4 } , \frac { 3 \pi } { 2 } \right) , \left( \frac { 9 } { 2 } , \frac { 3 \pi } { 2 } \right)
 Graph the Polar Equations of Conics - r = \frac { 9 } { 3 - \sin \theta } \quad  Identify the directrix and vertices.    A)  directrix: 9 unit(s)  below the pole at  x = 9  the pole at  \mathrm { y } = - 9  vertices:  \left( \frac { 9 } { 2 } , \frac { \pi } { 2 } \right)  , \left( \frac { 9 } { 4 } , \frac { 3 \pi } { 2 } \right)     B)  directrix: 9 unit(s)  to the right of vertices:  \left( \frac { 9 } { 2 } , \pi \right)  , \left( \frac { 9 } { 4 } , 0 \right)     C)  directrix: 9 unit(s)  to the left ofthe pole at  x = - 9  vertices:  \left( \frac { 9 } { 4 } , \pi \right)  , \left( \frac { 9 } { 2 } , 0 \right)     D)  directrix: 9 unit(s)  above the pole at  \mathrm { y } = 9  vertices:  \left( - \frac { 9 } { 4 } , \frac { 3 \pi } { 2 } \right)  , \left( \frac { 9 } { 2 } , \frac { 3 \pi } { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents