Solved

Graph the Polar Equations of Conics
- r=155+10sinθr = \frac { 15 } { 5 + 10 \sin \theta } \quad

Question 221

Multiple Choice

Graph the Polar Equations of Conics
- r=155+10sinθr = \frac { 15 } { 5 + 10 \sin \theta } \quad Identify the directrix and vertices.
 Graph the Polar Equations of Conics - r = \frac { 15 } { 5 + 10 \sin \theta } \quad  Identify the directrix and vertices.   A)  directrix:  \frac { 3 } { 2 }  unit(s)  abovethe pole at  y = \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     B)  directrix:  \frac { 3 } { 2 }  unit(s)  below the pole at  y = - \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     C)  directrix:  \frac { 3 } { 2 }  unit(s)  to the left ofthe pole at  x = - \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )     D)  directrix:  \frac { 3 } { 2 }  unit(s)  to the right of the pole at  x = \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )


A) directrix: 32\frac { 3 } { 2 } unit(s) abovethe pole at y=32y = \frac { 3 } { 2 }
vertices: (1,π2) ,(3,3π2) \left( 1 , \frac { \pi } { 2 } \right) , \left( 3 , \frac { 3 \pi } { 2 } \right)
 Graph the Polar Equations of Conics - r = \frac { 15 } { 5 + 10 \sin \theta } \quad  Identify the directrix and vertices.   A)  directrix:  \frac { 3 } { 2 }  unit(s)  abovethe pole at  y = \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     B)  directrix:  \frac { 3 } { 2 }  unit(s)  below the pole at  y = - \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     C)  directrix:  \frac { 3 } { 2 }  unit(s)  to the left ofthe pole at  x = - \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )     D)  directrix:  \frac { 3 } { 2 }  unit(s)  to the right of the pole at  x = \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )
B) directrix: 32\frac { 3 } { 2 } unit(s) below
the pole at y=32y = - \frac { 3 } { 2 }
vertices: (1,π2) ,(3,3π2) \left( 1 , \frac { \pi } { 2 } \right) , \left( 3 , \frac { 3 \pi } { 2 } \right)
 Graph the Polar Equations of Conics - r = \frac { 15 } { 5 + 10 \sin \theta } \quad  Identify the directrix and vertices.   A)  directrix:  \frac { 3 } { 2 }  unit(s)  abovethe pole at  y = \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     B)  directrix:  \frac { 3 } { 2 }  unit(s)  below the pole at  y = - \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     C)  directrix:  \frac { 3 } { 2 }  unit(s)  to the left ofthe pole at  x = - \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )     D)  directrix:  \frac { 3 } { 2 }  unit(s)  to the right of the pole at  x = \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )
C) directrix: 32\frac { 3 } { 2 } unit(s) to the left ofthe pole at x=32x = - \frac { 3 } { 2 }
vertices: (1,0) ,(3,π) ( 1,0 ) , ( 3 , \pi )
 Graph the Polar Equations of Conics - r = \frac { 15 } { 5 + 10 \sin \theta } \quad  Identify the directrix and vertices.   A)  directrix:  \frac { 3 } { 2 }  unit(s)  abovethe pole at  y = \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     B)  directrix:  \frac { 3 } { 2 }  unit(s)  below the pole at  y = - \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     C)  directrix:  \frac { 3 } { 2 }  unit(s)  to the left ofthe pole at  x = - \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )     D)  directrix:  \frac { 3 } { 2 }  unit(s)  to the right of the pole at  x = \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )
D) directrix: 32\frac { 3 } { 2 } unit(s) to the right of
the pole at x=32x = \frac { 3 } { 2 }
vertices: (1,0) ,(3,π) ( 1,0 ) , ( 3 , \pi )
 Graph the Polar Equations of Conics - r = \frac { 15 } { 5 + 10 \sin \theta } \quad  Identify the directrix and vertices.   A)  directrix:  \frac { 3 } { 2 }  unit(s)  abovethe pole at  y = \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     B)  directrix:  \frac { 3 } { 2 }  unit(s)  below the pole at  y = - \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     C)  directrix:  \frac { 3 } { 2 }  unit(s)  to the left ofthe pole at  x = - \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )     D)  directrix:  \frac { 3 } { 2 }  unit(s)  to the right of the pole at  x = \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents