## Physics for Scientists

Physics & Astronomy

## Quiz 15 :

Oscillations

Looking for Introduction to Physical Science Homework Help?

Q15 Q15 Q15

A frictionless pendulum clock on the surface of the earth has a period of 1.00 s. On a distant planet, the length of the pendulum must be shortened slightly to have a period of 1.00 s. What is true about the acceleration due to gravity on the distant planet?

Free

Unlocked

Multiple Choice

Q21 Q21 Q21

A machine part is vibrating along the x-axis in simple harmonic motion with a period of 0.27 s and a range (from the maximum in one direction to the maximum in the other) of 3.0 cm. At time t = 0 it is at its central position and moving in the +x direction. What is its position when t = 55 s?

Free

Unlocked

Multiple Choice

Q23 Q23 Q23

A 12.0-N object is oscillating in simple harmonic motion at the end of an ideal vertical spring. Its vertical position y as a function of time t is given by y(t) = 4.50 cm cos[(19.5 s

^{-1})t - π/8]. (a) What is the spring constant of the spring? (b) What is the maximum acceleration of the object? (c) What is the maximum speed that the object reaches? (d) How long does it take the object to go from its highest point to its lowest point?Free

Unlocked

Essay

Q24 Q24 Q24

An object of mass 8.0 kg is attached to an ideal massless spring and allowed to hang in the Earth's gravitational field. The spring stretches 3.6 cm before it reaches its equilibrium position. If this system is allowed to oscillate, what will be its frequency?

Free

Unlocked

Multiple Choice

Q29 Q29 Q29

A 1.6-kg block on a horizontal frictionless surface is attached to an ideal massless spring whose spring constant is 190 N/m. The block is pulled from its equilibrium position at x = 0.00 m to a displacement x = +0.080 m and is released from rest. The block then executes simple harmonic motion along the horizontal x-axis. What is the velocity of the block at time
T = 0.40 s?

Free

Unlocked

Multiple Choice

Q30 Q30 Q30

A 0.28-kg block on a horizontal frictionless surface is attached to an ideal massless spring whose spring constant is The block is pulled from its equilibrium position at x = 0.00 m to a displacement x = +0.080 m and is released from rest. The block then executes simple harmonic motion along the horizontal x-axis. When the displacement is x = -0.052 m, find the acceleration of the block.

Free

Unlocked

Multiple Choice

Q31 Q31 Q31

In the figure, two masses, M = 16 kg and m = 12.8.0 kg, are connected to a very light rigid bar and are attached to an ideal massless spring of spring constant 100 N/m. The system is set into oscillation with an amplitude of 78 cm. At the instant when the acceleration is at its maximum, the 16-kg mass separates from the 12.8.0-kg mass, which then remains attached to the spring and continues to oscillate. What will be the amplitude of oscillation of the 12.8.0-kg mass?

Free

Unlocked

Multiple Choice

Q32 Q32 Q32

A 2.00-kg object is attached to an ideal massless horizontal spring of spring constant 100.0 N/m and is at rest on a frictionless horizontal table. The spring is aligned along the x-axis and is fixed to a peg in the table. Suddenly this mass is struck by another 2.00-kg object traveling along the x-axis at 3.00 m/s, and the two masses stick together. What are the amplitude and period of the oscillations that result from this collision?

Free

Unlocked

Multiple Choice

Q34 Q34 Q34

A 0.50-kg object is attached to an ideal massless spring of spring constant 20 N/m along a horizontal, frictionless surface. The object oscillates in simple harmonic motion and has a speed of 1.5 m/s at the equilibrium position.
(a) What is the amplitude of vibration?
(b) At what location are the kinetic energy and the potential energy of the system the same?

Free

Unlocked

Short Answer

Q35 Q35 Q35

A 1.5-kg mass attached to an ideal massless spring with a spring constant of 20.0 N/m oscillates on a horizontal, frictionless track. At time t = 0.00 s, the mass is released from rest at
x = 10.0 cm. (That is, the spring is stretched by 10.0 cm.)
(a) Find the frequency of the oscillations.
(b) Determine the maximum speed of the mass. At what point in the motion does the maximum speed occur?
(c) What is the maximum acceleration of the mass? At what point in the motion does the maximum acceleration occur?
(d) Determine the total energy of the oscillating system.
(e) Express the displacement x as a function of time t.

Free

Unlocked

Essay

Q36 Q36 Q36

A 0.025-kg block on a horizontal frictionless surface is attached to an ideal massless spring whose spring constant is The block is pulled from its equilibrium position at x = 0.00 m to a displacement x = +0.080 m and is released from rest. The block then executes simple harmonic motion along the horizontal x-axis. When the displacement is what is the kinetic energy of the block?

Free

Unlocked

Multiple Choice

Q38 Q38 Q38

An object weighing 44.1 N hangs from a vertical massless ideal spring. When set in vertical motion, the object obeys the equation y(t) = (6.20 cm) cos[(2.74 rad/s)t - 1.40].
(a) Find the time for this object to vibrate one complete cycle.
(b) What are the maximum speed and maximum acceleration of the object.
(c) What is the TOTAL distance the object moves through in one cycle.
(d) Find the maximum kinetic energy of the object.
(e) What is the spring constant of the spring.

Free

Unlocked

Essay

Q40 Q40 Q40

In the figure, a 0.24-kg ball is suspended from a very light string 9.79 m long and is pulled slightly to the left. As the ball swings without friction through the lowest part of its motion it encounters an ideal massless spring attached to the wall. The spring pushes against the ball and eventually the ball is returned to its original starting position. Find the time for one complete cycle of this motion if the spring constant of the spring is 21 N/m. (Assume that once the pendulum ball hits the spring there is no effect due to the vertical movement of the ball.)

Free

Unlocked

Short Answer

Q43 Q43 Q43

A large stick is pivoted about one end and allowed to swing back and forth with no friction as a physical pendulum. The mass of the stick is and its center of gravity (found by finding its balance point) is from the pivot. If the period of the swinging stick is what is the moment of inertia of the stick about an axis through the pivot?

Free

Unlocked

Essay

Q45 Q45 Q45

A lightly damped harmonic oscillator, with a damping force proportional to its speed, is oscillating with an amplitude of 0.500 cm at time t = 0. When t = 8.20 s, the amplitude has died down to 0.400 cm. At what value of t will the oscillations have an amplitude of 0.250 cm?

Free

Unlocked

Multiple Choice

Q46 Q46 Q46

An ideal massless spring with a spring constant of 2.00 N/m is attached to an object of 75.0 g. The system has a small amount of damping. If the amplitude of the oscillations decreases from 10.0 mm to 5.00 mm in 15.0 s, what is the magnitude of the damping constant b?

Free

Unlocked

Multiple Choice

Q49 Q49 Q49

A 5.0-kg block is attached to an ideal massless spring whose spring constant is 125 N/m. The block is pulled from its equilibrium position at x = 0.00 m to a position at x = +0.687 m and is released from rest. The block then executes lightly damped oscillation along the x-axis, and the damping force is proportional to the velocity. When the block first returns to x = 0.00 m, its x component of velocity is -2.0 m/s and its x component of acceleration is +5.6 m/s

^{2}. (a) What is the magnitude of the acceleration of the block upon release at x = +0.687 m. (b) Find the damping constant b.Free

Unlocked

Short Answer