Services
Discover
Question 9
Let f(x,y) =sinx+xy+cosy.f ( x , y ) = \sin x + x y + \cos y .f(x,y) =sinx+xy+cosy. Its gradient vector field is
A) ∇f(x,y) =(cosx+y) i−(x+siny) j\nabla f ( x , y ) = ( \cos x + y ) \mathbf { i } - ( x + \sin y ) \mathbf { j }∇f(x,y) =(cosx+y) i−(x+siny) j B) ∇f(x,y) =(cosx+y) i+(x+siny) j\nabla f ( x , y ) = ( \cos x + y ) \mathbf { i } + ( x + \sin y ) \mathbf { j }∇f(x,y) =(cosx+y) i+(x+siny) j C) ∇f(x,y) =(cosx−y) i+(x−siny) j\nabla f ( x , y ) = ( \cos x - y ) \mathbf { i } + ( x - \sin y ) \mathbf { j }∇f(x,y) =(cosx−y) i+(x−siny) j D) ∇f(x,y) =(cosx+y) i+(x−siny) j\nabla f ( x , y ) = ( \cos x + y ) \mathbf { i } + ( x - \sin y ) \mathbf { j }∇f(x,y) =(cosx+y) i+(x−siny) j E) ∇f(x,y) =(cosx+y) i−(x−siny) j\nabla f ( x , y ) = ( \cos x + y ) \mathbf { i } - ( x - \sin y ) \mathbf { j }∇f(x,y) =(cosx+y) i−(x−siny) j
Correct Answer:
Verified
Unlock this answer nowGet Access to more Verified Answers free of charge
Q4: The domain of the vector field
Q5: The domain of the vector field
Q6: The domain of the vector field
Q7: The domain of the vector field
Q8: The domain of the vector field
Q10: Let Q11: Let Q12: Let Q13: Let Q14: Let Unlock this Answer For Free Now!View this answer and more for free by performing one of the following actionsScan the QR code to install the App and get 2 free unlocksMaximize QR codeUnlock quizzes for free by uploading documentsUpload documents
Q11: Let Q12: Let Q13: Let Q14: Let Unlock this Answer For Free Now!View this answer and more for free by performing one of the following actionsScan the QR code to install the App and get 2 free unlocksMaximize QR codeUnlock quizzes for free by uploading documentsUpload documents
Q12: Let Q13: Let Q14: Let Unlock this Answer For Free Now!View this answer and more for free by performing one of the following actionsScan the QR code to install the App and get 2 free unlocksMaximize QR codeUnlock quizzes for free by uploading documentsUpload documents
Q13: Let Q14: Let
Q14: Let
Unlock this Answer For Free Now!
View this answer and more for free by performing one of the following actions
Scan the QR code to install the App and get 2 free unlocks
Unlock quizzes for free by uploading documents