Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Business
Study Set
Marketing Research
Quiz 14: Bivariate Statistical Analysis: Tests of Association
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Practice Exam
Learn
Question 61
Short Answer
The Pearson's correlation coefficient is actually a standardised measure of __________.
Question 62
Short Answer
The square of the correlation coefficient is called the ___________ of _____________.
Question 63
Multiple Choice
Two groups of students - those looking to study science degrees and those looking to study business degrees - are asked to rank, in order of preference, the universities they are applying for. The researcher then wants to determine the correlation between the two groups. Which statistical test is most appropriate?
Question 64
Multiple Choice
In a regression equation, if the average value of Y is 15.6, the average value of X is 5.3, and the y-intercept is 8.5, then the slope is approximately:
Question 65
Short Answer
If the correlation between two variables is -0.64, then the coefficient of determination is approximately ____.
Question 66
Short Answer
If sales of baby strollers are associated with the number of babies born during the few months prior to the sales period, then the sales volume of baby strollers is the _________ variable and the number of babies born is the ___________ variable.
Question 67
Short Answer
When examining the correlation matrix, the p-value indicates the ___________ ____________ of the association.
Question 68
Multiple Choice
The Chi-square test involves comparing ________ frequencies with the ________ frequencies.
Question 69
Multiple Choice
The regression outputs for sales and number of salespeople are shown below. Model summary
Ā ModelĀ
R
R
-squareĀ
Ā AdjustedĀ
R
-squareĀ
Ā Std.Ā errorĀ ofĀ
Ā theĀ estimateĀ
1
.
201
Ā (a) Ā
.
04
.
342
56.823
\begin{array} { | l | l | r | r | r | } \hline \text { Model } & \boldsymbol { R } & \boldsymbol { R } \text {-square } & \begin{array} { c } \text { Adjusted } \\\boldsymbol { R } \text {-square }\end{array} & \begin{array} { r } \text { Std. error of } \\\text { the estimate }\end{array} \\\hline 1 & .201 \text { (a) } & .04 & .342 & 56.823 \\\hline\end{array}
Ā ModelĀ
1
ā
R
.201
Ā (a) Ā
ā
R
-squareĀ
.04
ā
Ā AdjustedĀ
R
-squareĀ
ā
.342
ā
Ā Std.Ā errorĀ ofĀ
Ā theĀ estimateĀ
ā
56.823
ā
ā
a Predictors: (Constant) , number of salespeople ANOVA(b)
Ā ModelĀ
Ā SumĀ ofĀ
Ā squaresĀ
Ā df
Ā MeanĀ squareĀ
F
Ā Sig.Ā
1
Ā RegressionĀ
77152.238
1
77152.238
35.117
.
057
(
a
)
Ā ResidualĀ
61516.962
28
2197.034
Ā TotalĀ
138669.200
29
\begin{array} { | l | l | c | r | r | r | r | } \hline \text { Model } & & \begin{array} { c } \text { Sum of } \\\text { squares }\end{array} &\text{ df} & \text { Mean square } & \boldsymbol { F } & { \text { Sig. } } \\\hline 1 & \text { Regression } & 77152.238 & 1 & 77152.238 & 35.117 & .057 ( \mathrm { a } ) \\\hline & \text { Residual } & 61516.962 & 28 & 2197.034 & & \\\hline & \text { Total } & 138669.200 & 29 & & & \\\hline\end{array}
Ā ModelĀ
1
ā
Ā RegressionĀ
Ā ResidualĀ
Ā TotalĀ
ā
Ā SumĀ ofĀ
Ā squaresĀ
ā
77152.238
61516.962
138669.200
ā
Ā df
1
28
29
ā
Ā MeanĀ squareĀ
77152.238
2197.034
ā
F
35.117
ā
Ā Sig.Ā
.057
(
a
)
ā
ā
a Predictors: (Constant) , number of salespeople B Dependent variable: Sales (A$'000) Coefficients(a)
Ā ModelĀ
Ā UnstandardisedĀ
Ā coefficientsĀ
Ā StandardisedĀ
Ā coefficientsĀ
t
Ā Sig.Ā
B
Ā Std.Ā ErrorĀ
Ā BetaĀ
1
Ā (Constant) Ā
72.612
9.203
2.565
.
013
Ā NumberĀ ofĀ salespeopleĀ
35.623
3.296
.
201
5.926
.
064
\begin{array} { | l | l | c | r | r | r | r| } \hline \text { Model } & &{ \begin{array} { c } \text { Unstandardised } \\\text { coefficients }\end{array} } & \begin{array} { c } \text { Standardised } \\\text { coefficients }\end{array} & { \boldsymbol { t } } & { \text { Sig. } } \\\hline & & \boldsymbol { B } & \text { Std. Error } & \text { Beta } & & \\\hline 1 & \text { (Constant) } & 72.612 & 9.203 & & 2.565 & .013 \\\hline & \text { Number of salespeople } & 35.623 & 3.296 & .201 & 5.926 & .064 \\\hline\end{array}
Ā ModelĀ
1
ā
Ā (Constant) Ā
Ā NumberĀ ofĀ salespeopleĀ
ā
Ā UnstandardisedĀ
Ā coefficientsĀ
ā
B
72.612
35.623
ā
Ā StandardisedĀ
Ā coefficientsĀ
ā
Ā Std.Ā ErrorĀ
9.203
3.296
ā
t
Ā BetaĀ
.201
ā
Ā Sig.Ā
2.565
5.926
ā
.013
.064
ā
ā
a Dependent variable: Sales (A$'000) The above shows that:
Question 70
Short Answer
A __________ test is typically used to test for association between two nominal variables.
Question 71
Multiple Choice
The regression output for sales and number of salespeople are shown below. Model summary
Ā ModelĀ
R
R
-squareĀ
Ā AdjustedĀ
R
-squareĀ
Ā Std.Ā errorĀ ofĀ
Ā theĀ estimateĀ
1
.
746
(
a
)
.
556
.
541
46.873
\begin{array} { | l | c | r | r | r | } \hline \text { Model } & \boldsymbol { R } & \boldsymbol { R } \text {-square } & \begin{array} { c } \text { Adjusted } \\\boldsymbol { R } \text {-square }\end{array} & \begin{array} { r } \text { Std. error of } \\\text { the estimate }\end{array} \\\hline 1 & .746 ( \mathrm { a } ) & .556 & .541 & 46.873 \\\hline\end{array}
Ā ModelĀ
1
ā
R
.746
(
a
)
ā
R
-squareĀ
.556
ā
Ā AdjustedĀ
R
-squareĀ
ā
.541
ā
Ā Std.Ā errorĀ ofĀ
Ā theĀ estimateĀ
ā
46.873
ā
ā
a Predictors: (Constant) , number of salespeople ANOVA(b)
Ā ModelĀ
Ā SumĀ ofĀ
Ā SquaresĀ
d
f
Ā MeanĀ squareĀ
F
Ā Sig.Ā
1
Ā RegressionĀ
77152.238
1
77152.238
35.117
.
000
(
a
)
Ā ResidualĀ
61516.962
28
2197.034
Ā TotalĀ
138669.200
29
\begin{array} { | l | l | r | r | r | r | r | } \hline \text { Model } & & \begin{array} { c } \text { Sum of } \\\text { Squares }\end{array} & { \boldsymbol { df } } & \text { Mean square } & \boldsymbol { F } & { \text { Sig. } } \\\hline 1 & \text { Regression } & 77152.238 & 1 & 77152.238 & 35.117 & .000 ( \mathrm { a } ) \\\hline & \text { Residual } & 61516.962 & 28 & 2197.034 & & \\\hline & \text { Total } & 138669.200 & 29 & & & \\\hline\end{array}
Ā ModelĀ
1
ā
Ā RegressionĀ
Ā ResidualĀ
Ā TotalĀ
ā
Ā SumĀ ofĀ
Ā SquaresĀ
ā
77152.238
61516.962
138669.200
ā
df
1
28
29
ā
Ā MeanĀ squareĀ
77152.238
2197.034
ā
F
35.117
ā
Ā Sig.Ā
.000
(
a
)
ā
ā
a Predictors: (Constant) , number of salespeople B Dependent Variable: Sales (A$'000) Coefficients(a)
Ā ModelĀ
Ā UnstandardisedĀ
Ā coefficientsĀ
Ā StandardisedĀ
Ā coefficientsĀ
t
Ā Sig.Ā
B
Ā Std.Ā ErrorĀ
Ā BetaĀ
1
Ā (Constant) Ā
72.612
9.203
2.565
.
013
Ā NumberĀ ofĀ salespeopleĀ
35.623
3.296
.
746
5.926
.
000
\begin{array} { | l | l | c | r | r | r | r| } \hline \text { Model } & &{ \begin{array} { c } \text { Unstandardised } \\\text { coefficients }\end{array} } & \begin{array} { c } \text { Standardised } \\\text { coefficients }\end{array} & { \boldsymbol { t } } & { \text { Sig. } } \\\hline & & \boldsymbol { B } & \text { Std. Error } & \text { Beta } & & \\\hline 1 & \text { (Constant) } & 72.612 & 9.203 & & 2.565 & .013 \\\hline & \text { Number of salespeople } & 35.623 & 3.296 & .746 & 5.926 & .000\\\hline\end{array}
Ā ModelĀ
1
ā
Ā (Constant) Ā
Ā NumberĀ ofĀ salespeopleĀ
ā
Ā UnstandardisedĀ
Ā coefficientsĀ
ā
B
72.612
35.623
ā
Ā StandardisedĀ
Ā coefficientsĀ
ā
Ā Std.Ā ErrorĀ
9.203
3.296
ā
t
Ā BetaĀ
.746
ā
Ā Sig.Ā
2.565
5.926
ā
.013
.000
ā
ā
a Dependent variable: Sales (A$'000) The above shows that for every one-unit increase in number of salespeople, average sales will increase by approximately:
Question 72
Short Answer
A __________ ____ correlation coefficient is typically used to test for association between two ordinal variables.
Question 73
Short Answer
The ___________ coefficient, r, ranges from +1 to -1.
Question 74
Short Answer
It is a requirement in correlation analysis that both variables to be tested are ________ or _____ in nature.
Question 75
Multiple Choice
A research hypothesis states that male university students are more likely to study STEM courses than female university students. Thus, the researcher would like test to see if an association exists between gender and area of study. Which statistical test is most appropriate?
Question 76
Short Answer
'Tests of ___________' is a general term which refers to a number of bivariate statistical techniques used to test the nature of the relationship between the variables.
Question 77
Multiple Choice
A Spearman's rank-order correlation coefficient is a technique used when determining the correlation between two _______ scaled variables.
Question 78
Short Answer
If the relationship between two variables is such that both variables are caused by a third variable, then the original relationship between the first two variables is said to be __________ _______.