Solved

The Regression Output for Sales and Advertising Spend Is Shown

Question 80

Multiple Choice

The regression output for sales and advertising spend is shown below. Model summary
 Model RR-square  Adjusted R-square  Std. error of  the estimate 1.445 (a)  .198.1691229.780\begin{array} { | l | l | r | r | r | } \hline \text { Model } & \boldsymbol { R } & \boldsymbol { R } \text {-square } & \begin{array} { c } \text { Adjusted } \\\boldsymbol { R } \text {-square }\end{array} & \begin{array} { r } \text { Std. error of } \\\text { the estimate }\end{array} \\\hline 1 & .445 \text { (a) } & .198 & .169 & 1229.780 \\\hline\end{array} a Predictors: (Constant) , advertising spend
ANOVA(b)
 Model  Sum of  squares  df  Mean square F Sig. 1 Regression 10448599.647110448599.6476.909.014(a)  Residual 42346067.019281512359.536 Total 52794666.66729\begin{array} { | l | l | r | r | r | r | c | } \hline \text { Model } & & \begin{array} { c } \text { Sum of } \\\text { squares }\end{array} & \text { df } & \text { Mean square } & { \boldsymbol { F } } & \text { Sig. } \\\hline 1 & \text { Regression } & 10448599.647 & 1 & 10448599.647 & 6.909 & .014 ( \mathrm { a } ) \\\hline & \text { Residual } & 42346067.019 & 28 & 1512359.536 & & \\\hline & \text { Total } & 52794666.667 & 29 & & & \\\hline\end{array} a Predictors: (Constant) , advertising spend
B Dependent variable: Sales (A$'000)
Coefficients(a)
 Model  Unstandardised  coefficients  Standardised  coefficients t Sig. B Std. Error  Beta 1 (Constant)  2993.298706.2474.238.000 Number of salespeople 42.92816.332.4452.628.014\begin{array} { | l | l | c | r | r | r | r| } \hline \text { Model } & &{ \begin{array} { c } \text { Unstandardised } \\\text { coefficients }\end{array} } & \begin{array} { c } \text { Standardised } \\\text { coefficients }\end{array} & { \boldsymbol { t } } & { \text { Sig. } } \\\hline & & \boldsymbol { B } & \text { Std. Error } & \text { Beta } & & \\\hline 1 & \text { (Constant) } & 2993.298&706.247&&4.238&.000 \\\hline & \text { Number of salespeople } & 42.928&16.332&.445&2.628&.014\\\hline\end{array} a Dependent variable: Sales (A$'000)
The above shows that:


A) approximately 45 per cent of the variance in sales can be explained by advertising spend.
B) approximately 43 per cent of the variance in Sales can be explained by advertising spend.
C) approximately 14 per cent of the variance in sales can be explained by advertising spend.
D) approximately 20 per cent of the variance in sales can be explained by advertising spend.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents