Solved

Find the Derivative at Each Critical Point and Determine the Local

Question 44

Multiple Choice

Find the derivative at each critical point and determine the local extreme values.
- y=x21xy = x ^ { 2 } \sqrt { 1 - x }


A)
 Critical Pt.  derivative  Extremum  Value x=450 local max 161255\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=\frac{4}{5} & 0 & \text { local max } & \frac{16}{125} \sqrt{5}\end{array}

B)
 Critical Pt.  derivative  Extremum  Value x=00 min 0x=10 min 0x=450 local max161255\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & 0 & \text { min } & 0 \\x=1 & 0 & \text { min } & 0 \\x=\frac{4}{5} & 0 & \text { local } \max & \frac{16}{125} \sqrt{5}\end{array}

C)
 Critical Pt.  derivative  Extremum  Value x=00min0x=1 undefined  min 0x=450 local max 161255\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & 0 & \min & 0 \\x=1 & \text { undefined } & \text { min } & 0 \\x=\frac{4}{5} & 0 & \text { local max } & \frac{16}{125} \sqrt{5}\end{array}

D)
 Critical Pt.  derivative  Extremum  Value x=1 undefined  min 0x=450 local max161255\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=1 & \text { undefined } & \text { min } & 0 \\x=\frac{4}{5} & 0 & \text { local } \max & \frac{16}{125} \sqrt{5}\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents