Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Mathematics
Study Set
College Algebra Graphs
Quiz 1: Graphs, Functions, and Models
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Question 81
Short Answer
Solve and graph the solution set. -y - 11 < -16
A)
{
y
∣
y
>
−
5
}
 orÂ
(
−
5
,
∞
)
\{ y \mid y > - 5 \} \text { or } ( - 5 , \infty )
{
y
∣
y
>
−
5
}
 orÂ
(
−
5
,
∞
)
B)
{
y
∣
y
≤
−
5
}
 orÂ
(
−
∞
,
−
5
]
\left\{ y ^ { \mid } y \leq - 5 \right\} \text { or } ( - \infty , - 5 ]
{
y
∣
y
≤
−
5
}
 orÂ
(
−
∞
,
−
5
]
C)
{
y
∣
y
≥
−
5
}
 orÂ
[
−
5
,
∞
)
\{ y \mid y \geq - 5 \} \text { or } [ - 5 , \infty )
{
y
∣
y
≥
−
5
}
 orÂ
[
−
5
,
∞
)
D)
{
y
∣
y
<
−
5
}
 orÂ
(
−
∞
,
−
5
)
\{ y \mid y < - 5 \} \text { or } ( - \infty , - 5 )
{
y
∣
y
<
−
5
}
 orÂ
(
−
∞
,
−
5
)
Question 82
Short Answer
Solve the problem. -If an object is dropped from a tower of unknown height, the velocity of the object after t seconds can be obtained by multiplying t by 32 and adding 10 to the result. Therefore, you can express V as A linear function of t. Find the domain of this function. A)
(
−
∞
,
∞
)
( - \infty , \infty )
(
−
∞
,
∞
)
B) [1,4] C)
(
−
1
,
∞
)
( - 1 , \infty )
(
−
1
,
∞
)
D)
[
0
,
∞
)
[ 0 , \infty )
[
0
,
∞
)
Question 83
Short Answer
Find the domain of the function. -
f
(
x
)
=
8
5
−
x
f ( x ) = \frac { 8 } { \sqrt { 5 - x } }
f
(
x
)
=
5
−
x
​
8
​
A)
{
x
∣
x
≥
−
5
}
,
 orÂ
[
−
5
,
∞
)
\{ x \mid x \geq - 5 \} , \text { or } [ - 5 , \infty )
{
x
∣
x
≥
−
5
}
,
 orÂ
[
−
5
,
∞
)
B)
{
x
∣
x
≥
5
}
,
 orÂ
[
5
,
∞
)
\{ x \mid x \geq 5 \} , \text { or } [ 5 , \infty )
{
x
∣
x
≥
5
}
,
 orÂ
[
5
,
∞
)
C)
{
x
∣
x
<
5
}
,
 orÂ
(
−
∞
,
5
)
\{ x \mid x < 5 \} , \text { or } ( - \infty , 5 )
{
x
∣
x
<
5
}
,
 orÂ
(
−
∞
,
5
)
D)
{
x
∣
x
<
−
5
}
,
 orÂ
(
−
∞
,
−
5
)
\{ x \mid x < - 5 \} , \text { or } ( - \infty , - 5 )
{
x
∣
x
<
−
5
}
,
 orÂ
(
−
∞
,
−
5
)
Question 84
Short Answer
Solve and write interval notation for the solution set. Then graph the solution set. -
−
1
<
−
5
x
+
4
≤
19
- 1 < - 5 x + 4 \leq 19
−
1
<
−
5
x
+
4
≤
19
A)
[
−
1
,
3
)
[ - 1,3 )
[
−
1
,
3
)
B)
[
−
3
,
1
)
[ - 3,1 )
[
−
3
,
1
)
C)
(
−
3
,
1
]
( - 3,1 ]
(
−
3
,
1
]
D)
(
−
1
,
3
]
( - 1,3 ]
(
−
1
,
3
]
Question 85
Short Answer
Graph the function. -
f
(
x
)
=
x
2
−
3
f ( x ) = x ^ { 2 } - 3
f
(
x
)
=
x
2
−
3
A)
B)
C)
D)
Question 86
Short Answer
Find the center and radius of the circle. -
(
x
+
6
)
2
+
(
y
+
9
)
2
=
1
( x + 6 ) ^ { 2 } + ( y + 9 ) ^ { 2 } = 1
(
x
+
6
)
2
+
(
y
+
9
)
2
=
1
A) (-9,-6) ; 1 B) (9,6) ; 1 C) (-6,-9) ; 1 D) (6,9) ; 1
Question 87
Short Answer
Graph the equation using the slope and the y-intercept. --5x+ 15y = -45
A)
B)
C)
D)
Question 88
Short Answer
Graph the equation. -
y
=
x
2
+
6
x
+
5
y = x ^ { 2 } + 6 x + 5
y
=
x
2
+
6
x
+
5
A)
B)
C)
D)
Question 89
Short Answer
Solve the problem. -A study was conducted to compare the average time spent in the lab each week versus course grade for computer students. The results are recorded in the table below. By using linear regression, the following function is obtained: y = 88.6 - 1.86x where x is the number of hours spent in the lab and y is grade on the test. Use this function to predict the grade of a student who spends 19 hours in the lab.
 Number of hours spent in labÂ
 Grade (percent)Â
10
96
11
51
16
62
9
58
7
89
15
81
16
46
10
51
\begin{array} { c c } \text { Number of hours spent in lab } & \text { Grade (percent) } \\\hline 10 & 96 \\11 & 51 \\16 & 62 \\9 & 58 \\7 & 89 \\15 & 81 \\16 & 46 \\10 & 51\end{array}
 Number of hours spent in labÂ
10
11
16
9
7
15
16
10
​
 Grade (percent)Â
96
51
62
58
89
81
46
51
​
​
A) 69.6 B) 57.1 C) 49.3 D) 53.3
Question 90
Short Answer
Find the equation of the circle. Express the equation in standard form -
A)
(
x
−
30
)
2
+
(
y
−
25
)
2
=
1
0
2
( x - 30 ) ^ { 2 } + ( y - 25 ) ^ { 2 } = 10 ^ { 2 }
(
x
−
30
)
2
+
(
y
−
25
)
2
=
1
0
2
B)
(
x
−
30
)
2
+
(
y
+
25
)
2
=
1
0
2
( x - 30 ) ^ { 2 } + ( y + 25 ) ^ { 2 } = 10 ^ { 2 }
(
x
−
30
)
2
+
(
y
+
25
)
2
=
1
0
2
C)
(
x
+
25
)
2
+
(
y
+
30
)
2
=
1
0
2
( x + 25 ) ^ { 2 } + ( y + 30 ) ^ { 2 } = 10 ^ { 2 }
(
x
+
25
)
2
+
(
y
+
30
)
2
=
1
0
2
D)
(
x
−
25
)
2
+
(
y
−
30
)
2
=
5
2
( x - 25 ) ^ { 2 } + ( y - 30 ) ^ { 2 } = 5 ^ { 2 }
(
x
−
25
)
2
+
(
y
−
30
)
2
=
5
2
Question 91
Short Answer
Find the slope of the line. -
A) -8 B)
−
1
8
- \frac { 1 } { 8 }
−
8
1
​
C)
1
8
\frac { 1 } { 8 }
8
1
​
D) 8
Question 92
Short Answer
Find the slope and the y-intercept of the line with the given equation. -7x +9 y=80 A)
−
1
2
7
;
(
0
,
9
80
)
- 1 \frac { 2 } { 7 } ; \left( 0 , \frac { 9 } { 80 } \right)
−
1
7
2
​
;
(
0
,
80
9
​
)
B)
−
7
9
;
(
0
,
80
9
)
- \frac { 7 } { 9 } ; \left( 0 , \frac { 80 } { 9 } \right)
−
9
7
​
;
(
0
,
9
80
​
)
C)
7
9
;
(
0
,
80
9
)
\frac { 7 } { 9 } ; \left( 0 , \frac { 80 } { 9 } \right)
9
7
​
;
(
0
,
9
80
​
)
D)
1
2
7
;
(
0
,
9
80
)
1 \frac { 2 } { 7 } ; \left( 0 , \frac { 9 } { 80 } \right)
1
7
2
​
;
(
0
,
80
9
​
)
Question 93
Short Answer
Solve the problem. -The paired data below consist of the costs of advertising (in thousands of dollars)and the number of products sold (in thousands). By using linear regression, the following function is obtained: Y = 55.8 + 2.79x where x is the cost of advertising (in thousands of dollars)and y is number of products sold (in thousands). Use this function to predict the number of products sold if the cost of Advertising is $9000.
 CostÂ
9
2
3
4
2
5
9
10
 NumberÂ
85
52
55
68
67
86
83
73
\begin{array} { c | r r r r r r r r } \text { Cost } & 9 & 2 & 3 & 4 & 2 & 5 & 9 & 10 \\\hline \text { Number } & 85 & 52 & 55 & 68 & 67 & 86 & 83 & 73\end{array}
 CostÂ
 NumberÂ
​
9
85
​
2
52
​
3
55
​
4
68
​
2
67
​
5
86
​
9
83
​
10
73
​
​
A) 25,165.8 B) 77.91 C) 80.91 D) 87.61
Question 94
Short Answer
Is the following correspondence a function? -
 NameÂ
 Test ScoreÂ
 Bob L.Â
90
 Susan H.Â
83
 Jim H.Â
76
 Bruce B.Â
96
\begin{array} { r | r } \text { Name } & \text { Test Score } \\\hline \text { Bob L. } & 90 \\\hline \text { Susan H. } & 83 \\\hline \text { Jim H. } & 76 \\\hline \text { Bruce B. } & 96\end{array}
 NameÂ
 Bob L.Â
 Susan H.Â
 Jim H.Â
 Bruce B.Â
​
 Test ScoreÂ
90
83
76
96
​
​
A) Yes B) No
Question 95
Short Answer
Solve the problem using your calculator. -The paired data below consist of the test scores of 6 randomly selected students and the number of hours they studied for the test. Use a graphing calculator to model the data with a linear function that predicts a student's score as a function of the number of hours he or she studied.
 HoursÂ
5
10
4
6
10
9
 ScoreÂ
64
86
69
86
59
87
\begin{array} { l | r r r r r r } \text { Hours } & 5 & 10 & 4 & 6 & 10 & 9 \\\hline \text { Score } & 64 & 86 & 69 & 86 & 59 & 87\end{array}
 HoursÂ
 ScoreÂ
​
5
64
​
10
86
​
4
69
​
6
86
​
10
59
​
9
87
​
​
A) y=33.7+2.14x B) y=33.7-2.14x C) y=67.3+1.07x D) y=-67.3+1.07x
Question 96
Short Answer
Solve the equation. -
1
6
x
−
2
=
1
4
x
−
3
\frac { 1 } { 6 } x - 2 = \frac { 1 } { 4 } x - 3
6
1
​
x
−
2
=
4
1
​
x
−
3
A) - 12 B) 3 C) 15 D) 12
Question 97
Short Answer
Write an equation in slope-intercept form for the line shown. -
A)
y
=
1
2
x
y = \frac { 1 } { 2 } x
y
=
2
1
​
x
B) y= -2x C) y= 2x D)
y
=
−
1
2
x
y = - \frac { 1 } { 2 } x
y
=
−
2
1
​
x
Question 98
Multiple Choice
Solve the problem. -A survey of 7136 first-time vacationers showed that 80% more vacationers took their vacation in their own country rather than travel abroad. How many vacationers in the sample took their Vacation abroad?