Solved

Suppose a Population Growth Is Modeled by the Logistic Equation dPdt=0.0001P(1000P)\frac { d P } { d t } = 0.0001 P ( 1000 - P )

Question 2

Multiple Choice

Suppose a population growth is modeled by the logistic equation dPdt=0.0001P(1000P) \frac { d P } { d t } = 0.0001 P ( 1000 - P ) with P(0) = 10. Find the formula for the population after t years.


A) P(t) =10001+99e0.01tP ( t ) = \frac { 1000 } { 1 + 99 e ^ { - 0.01 t } }
B) P(t) =10001+10e0.01tP ( t ) = \frac { 1000 } { 1 + 10 e ^ { - 0.01 t } }
C) P(t) =10001+e0.01tP ( t ) = \frac { 1000 } { 1 + e ^ { - 0.01 t } }
D) P(t) =1001+9e0.01tP ( t ) = \frac { 100 } { 1 + 9 e ^ { - 0.01 t } }
E) P(t) =10001+9e0.01tP ( t ) = \frac { 1000 } { 1 + 9 e ^ { - 0.01 t } }
F) P(t) =100199e0.01tP ( t ) = \frac { 100 } { 1 - 99 e ^ { - 0.01 t } }
G) P(t) =10001+99e0.1tP ( t ) = \frac { 1000 } { 1 + 99 e ^ { - 0.1 t } }
H) P(t) =1000e0.1tP ( t ) = 1000 e ^ { 0.1 t }

Correct Answer:

verifed

Verified

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents