Solved

Use Power Series to Solve the Differential Equation (x2+1)y+xyy=0\left( x ^ { 2 } + 1 \right) y ^ { \prime \prime } + x y ^ { \prime } - y = 0

Question 3

Multiple Choice

Use power series to solve the differential equation.. (x2+1) y+xyy=0\left( x ^ { 2 } + 1 \right) y ^ { \prime \prime } + x y ^ { \prime } - y = 0


A) y(x) =c0n=2(1) n1(2n3) !22n2n!(n2) !x2ny ( x ) = c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( 2 n - 3 ) ! } { 2 ^ { 2 n - 2 } n ! ( n - 2 ) ! } x ^ { 2 n }
B) y(x) =c0+c1x+c0x22+c0n=2(1) n1(2n3) !22n2n!(n2) !x2n+1y ( x ) = c _ { 0 + } c _ { 1 } x + c _ { 0 } \frac { x ^ { 2 } } { 2 } + c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( 2 n - 3 ) ! } { 2 ^ { 2 n - 2 } n ! ( n - 2 ) ! } x ^ { 2 n + 1 }
C) y(x) =c0+c1x+c0x22+c0n=2(1) n1(2n3) !22n2(n2) !x2ny ( x ) = c _ { 0 + } c _ { 1 } x + c _ { 0 } \frac { x ^ { 2 } } { 2 } + c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( 2 n - 3 ) ! } { 2 ^ { 2 n - 2 } ( n - 2 ) ! } x ^ { 2 n }
D) y(x) =c0+c1x+c0x22+c0n=2(1) n1(2n3) !22n2n!(n2) !x2ny ( x ) = c _ { 0 + } c _ { 1 } x + c _ { 0 } \frac { x ^ { 2 } } { 2 } + c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( 2 n - 3 ) ! } { 2 ^ { 2 n - 2 } n ! ( n - 2 ) ! } x ^ { 2 n }
E) y(x) =c0+c1x+c0x22+c0n=2(1) n+1(2n) !22n+2n!(n2) !x2n+1y ( x ) = c _ { 0 + } c _ { 1 } x + c _ { 0 } \frac { x ^ { 2 } } { 2 } + c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n + 1 } ( 2 n ) ! } { 2 ^ { 2 n + 2 } n ! ( n - 2 ) ! } x ^ { 2 n + 1 }

Correct Answer:

verifed

Verified

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents