Solved

The General Solution Of y+n2n2y=0,y(0)=0,y(1)=0,n=1,2,3y ^ { \prime \prime } + n ^ { 2 } n ^ { 2 } y = 0 , y ( 0 ) = 0 , y ( 1 ) = 0 , n = 1,2,3 \ldots

Question 1

Multiple Choice

The general solution of y+n2n2y=0,y(0) =0,y(1) =0,n=1,2,3y ^ { \prime \prime } + n ^ { 2 } n ^ { 2 } y = 0 , y ( 0 ) = 0 , y ( 1 ) = 0 , n = 1,2,3 \ldots is


A) y=0y = 0
B) y=csin(nπx) y = c \cdot \sin ( n \pi x )
C) y=ccos(nπx) y = c \cdot \cos ( n \pi x )
D) c(en+xen+x) c \left( e ^ { n + x } - e ^ { - n + x } \right)
E) c(en+x+en+x) c \left( e ^ { n + x } + e ^ { - n + x } \right)

Correct Answer:

verifed

Verified

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents