Solved

Consider Laplace's Equation on a Rectangle 2ux2+2uy2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0

Question 30

Multiple Choice

Consider Laplace's equation on a rectangle, 2ux2+2uy2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0 with boundary conditions ux(0,y) =0,ux(1,y) =0,u(x,0) =0,u(x,2) =f(x) u _ { x } ( 0 , y ) = 0 , u _ { x } ( 1 , y ) = 0 , u ( x , 0 ) = 0 , u ( x , 2 ) = f ( x ) . When the variables are separated using u(x,y) =X(x) Y(y) u ( x , y ) = X ( x ) Y ( y ) , the resulting problems for XX and YY are


A) X+λX=0,X(0) =0,X(1) =0,YλY=0,Y(0) =0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( 1 ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( 0 ) = 0
B) X+λX=0,X(0) =0,X(1) =0,Y+λY=0,Y(0) =0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( 1 ) = 0 , Y ^ { \prime \prime } + \lambda Y = 0 , Y ( 0 ) = 0
C) X+λX=0,X(0) =0,X(1) =0,YλY=0,Y(2) =0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( 1 ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( 2 ) = 0
D) X+λX=0,X(0) =0,Y+λY=0,Y(0) =0,Y(2) =0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , Y ^ { \prime \prime } + \lambda Y = 0 , Y ( 0 ) = 0 , Y ( 2 ) = 0
E) X+λX=0,X(0) =0,YλY=0,Y(0) =0,Y(2) =0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( 0 ) = 0 , Y ( 2 ) = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents