Solved

Consider the Following Linear Program The Management Scientist Provided the Following Solution Output:
OPTIMAL SOLUTION

Question 63

Essay

Consider the following linear program:
 Min 6x1+9x2($ cost ) s.t. x1+2x2810x1+7.5x230x22x1,x20\begin{array} { c r } \text { Min } & 6 x _ { 1 } + 9 x _ { 2 } ( \$ \text { cost } ) \\\text { s.t. } & x _ { 1 } + 2 x _ { 2 } \leq 8 \\& 10 x _ { 1 } + 7.5 x _ { 2 } \geq 30 \\&x _ { 2 } \geq 2 \\&x _ { 1 } , x _ { 2 } \geq 0\end{array}
The Management Scientist provided the following solution output:
OPTIMAL SOLUTION
Objective Function Value = 27.000  Variable  Value  Reduced Cost  X1 1.5000.000 X2 2.0000.000\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Cost } \\\text { X1 } & 1.500 & 0.000 \\\text { X2 } & 2.000 & 0.000\end{array}  Constraint  Slack/Surplus  Dual Price 12.5000.00020.0000.60030.0004.500\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Price } \\1 & 2.500 & 0.000 \\2 & 0.000 & - 0.600 \\3 & 0.000 & - 4.500\end{array} OBJECTIVE COEFFICIENT RANGES  Variable  Lower Limit  Current Value  Upper Limit  X1 0.0006.00012.000 X2 4.5009.000 No Upper Limit \begin{array} { c c c c } \text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\text { X1 } & 0.000 & 6.000 & 12.000 \\\text { X2 } & 4.500 & 9.000 & \text { No Upper Limit }\end{array} RIGHT HAND SIDE RANGES  Constraint  Lower Limit  Current Value  Upper Limit 15.5008.000 No Upper Limit 215.00030.00055.00030.0002.0004.000\begin{array} { c c c c } \text { Constraint } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\1 & 5.500 & 8.000 & \text { No Upper Limit } \\2 & 15.000 & 30.000 & 55.000 \\3 & 0.000 & 2.000 & 4.000\end{array}
a.What is the optimal solution including the optimal value of the objective function?
b.Suppose the unit cost of x1 is decreased to $4. Is the above solution still optimal? What is the value of the objective function when this unit cost is decreased to $4?
c.How much can the unit cost of x2 be decreased without concern for the optimal solution changing?
d.If simultaneously the cost of x1 was raised to $7.5 and the cost of x2 was reduced to $6, would the current solution still remain optimal?
e.If the right-hand side of constraint 3 is increased by 1, what will be the effect on the optimal solution?

Correct Answer:

verifed

Verified

a.x1 = 1.5 and x2 = 2.0,and the objective ...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents