Solved

Consider the Following Periodic Function with Period 2?:
F (T) π\pi

Question 23

Multiple Choice

Consider the following periodic function with period 2?:
F (t) =  Consider the following periodic function with period 2?: F (t)  =   F (t + 2  \pi )  = f (t)  Which of these is the Fourier representation for f (t) ? A)    \frac{8}{9}+\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi}{9} \sin (n t)    B)    \frac{8}{9}+\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi}{9} \cos (n t)    C)    \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi}{9} \sin (n t)    D)    \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi}{9} \cos (n t)
F (t + 2 π\pi ) = f (t)
Which of these is the Fourier representation for f (t) ?


A) 89+8πn=11nsinnπ9sin(nt) \frac{8}{9}+\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi}{9} \sin (n t)
B) 89+8πn=11nsinnπ9cos(nt) \frac{8}{9}+\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi}{9} \cos (n t)
C) 8πn=11nsinnπ9sin(nt) \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi}{9} \sin (n t)
D) 8πn=11nsinnπ9cos(nt) \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi}{9} \cos (n t)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents