Solved

Let G(x) Be a Differential 0-Form on a Domain D \bigtriangledown

Question 31

Multiple Choice

Let g(x) be a differential 0-form on a domain D in  Let g(x)  be a differential 0-form on a domain D in   . If dg(x)  =   (x)  dx+   (x)  dy +   (x)  dz, then the vector field   (x)  i +   (x)  j +   (x)  k is equal to A)  grad (g(x) )  B)  div(g(x) )  C)  curl ( \bigtriangledown g(x) )  D)   \bigtriangledown  × \bigtriangledown (g(x) )  E)   \bigtriangledown (g(x) )  g(x)  . If dg(x) =  Let g(x)  be a differential 0-form on a domain D in   . If dg(x)  =   (x)  dx+   (x)  dy +   (x)  dz, then the vector field   (x)  i +   (x)  j +   (x)  k is equal to A)  grad (g(x) )  B)  div(g(x) )  C)  curl ( \bigtriangledown g(x) )  D)   \bigtriangledown  × \bigtriangledown (g(x) )  E)   \bigtriangledown (g(x) )  g(x)  (x) dx+  Let g(x)  be a differential 0-form on a domain D in   . If dg(x)  =   (x)  dx+   (x)  dy +   (x)  dz, then the vector field   (x)  i +   (x)  j +   (x)  k is equal to A)  grad (g(x) )  B)  div(g(x) )  C)  curl ( \bigtriangledown g(x) )  D)   \bigtriangledown  × \bigtriangledown (g(x) )  E)   \bigtriangledown (g(x) )  g(x)  (x) dy +  Let g(x)  be a differential 0-form on a domain D in   . If dg(x)  =   (x)  dx+   (x)  dy +   (x)  dz, then the vector field   (x)  i +   (x)  j +   (x)  k is equal to A)  grad (g(x) )  B)  div(g(x) )  C)  curl ( \bigtriangledown g(x) )  D)   \bigtriangledown  × \bigtriangledown (g(x) )  E)   \bigtriangledown (g(x) )  g(x)  (x) dz, then the vector field  Let g(x)  be a differential 0-form on a domain D in   . If dg(x)  =   (x)  dx+   (x)  dy +   (x)  dz, then the vector field   (x)  i +   (x)  j +   (x)  k is equal to A)  grad (g(x) )  B)  div(g(x) )  C)  curl ( \bigtriangledown g(x) )  D)   \bigtriangledown  × \bigtriangledown (g(x) )  E)   \bigtriangledown (g(x) )  g(x)  (x) i +  Let g(x)  be a differential 0-form on a domain D in   . If dg(x)  =   (x)  dx+   (x)  dy +   (x)  dz, then the vector field   (x)  i +   (x)  j +   (x)  k is equal to A)  grad (g(x) )  B)  div(g(x) )  C)  curl ( \bigtriangledown g(x) )  D)   \bigtriangledown  × \bigtriangledown (g(x) )  E)   \bigtriangledown (g(x) )  g(x)  (x) j +  Let g(x)  be a differential 0-form on a domain D in   . If dg(x)  =   (x)  dx+   (x)  dy +   (x)  dz, then the vector field   (x)  i +   (x)  j +   (x)  k is equal to A)  grad (g(x) )  B)  div(g(x) )  C)  curl ( \bigtriangledown g(x) )  D)   \bigtriangledown  × \bigtriangledown (g(x) )  E)   \bigtriangledown (g(x) )  g(x)  (x) k is equal to


A) grad (g(x) )
B) div(g(x) )
C) curl ( \bigtriangledown g(x) )
D) \bigtriangledown × \bigtriangledown (g(x) )
E) \bigtriangledown (g(x) )  Let g(x)  be a differential 0-form on a domain D in   . If dg(x)  =   (x)  dx+   (x)  dy +   (x)  dz, then the vector field   (x)  i +   (x)  j +   (x)  k is equal to A)  grad (g(x) )  B)  div(g(x) )  C)  curl ( \bigtriangledown g(x) )  D)   \bigtriangledown  × \bigtriangledown (g(x) )  E)   \bigtriangledown (g(x) )  g(x)  g(x)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents