Solved

Consider the Reaction Given By
-In Standard Notation, the Fractional Surface Coverage

Question 28

Multiple Choice

Consider the reaction given by Mk1Mads++eMads+k2k2Msol2++e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\\\M _ { a d s} ^ { + } \frac { k _ { 2 } } { \longleftarrow k _ { - 2 } } M _ { s o l } ^ { 2 + } + e ^ { - }\end{array} .
-In standard notation, the fractional surface coverage ( θ\theta ) of the adsorbed intermediate Mads+M _ { a ds } ^ { + }
is given by


A) Γdθdt=k1(1θ) k2θk2CMad2+\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta - k _ { - 2 } C _ { M _ { a d } ^ { 2 + } }
B) Γdθdt=k1(1θ) k2θ+k2CMsol+2(1θ) \Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta + k _ { - 2 } C _ { M _ { sol } ^ { +2} } ( 1 - \theta )
C) Γdθdt=k1(1θ) k2θ\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta
D) Γdθdt=k1(1θ) k2CMsol+2\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { - 2 } C _ {M_ {sol } ^ { + 2 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents