Solved

Consider a Reaction Given By
-In the Same Mechanism, the Steady-State Fractional Surface Coverage

Question 3

Multiple Choice

Consider a reaction given by Mk1k1Mads++eMads+k2k2Msol+\begin{array} { l } M \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M _ { a ds } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + }\underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } M _ { sol } ^ { + }\end{array} .
-In the same mechanism, the steady-state fractional surface coverage of the intermediate is given by


A) θss=k1dck1dc˙+k2\theta _ { ss } = \frac { k _ { 1 { dc} } } { k _ { 1 \dot {dc } } + k _ { 2 } }
B) θss=k1dck1dc˙+k1dc˙+k2+k2\theta _ { s s } = \frac { k _ { 1 d c } } { k _ { 1 \dot { dc } } + k _ { - 1 \dot { dc } } + k _ { 2 } + k _ { - 2 } }
C) θss=k1dc+k2CMsol+2k1dc+k1dc+k2+k2CMsol+2\theta_{ss}=\frac{k_{1 d c}+k_{-2} C_{M^{+2}_{sol}}}{k_{1 d c}+k_{-1 d c}+k_{2}+k_{-2} C_{M^{+2}_{sol}} }
D) θss=k1dc˙k1dc˙k1dc˙+k1dc˙+k2+k2CM2ai2+\theta _ { ss } = \frac { k _ { 1 \dot { dc } } - k _ { - 1 \dot { dc } } } { k _ { 1 \dot { dc } } + k _ { - 1 \dot { dc } } + k _ { 2 } + k _ { - 2 } C _ { M _ { 2a i } ^ { 2+ } } }

Correct Answer:

verifed

Verified

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents