Services
Discover
Question 163
The integral ∫x2tan−1xdx\int x ^ { 2 } \tan ^ { - 1 } x d x∫x2tan−1xdx is
A) −2x3tan−1x+(1+x2) −ln(1+x2) 6+C- \frac { 2 x ^ { 3 } \tan ^ { - 1 } x + \left( 1 + x ^ { 2 } \right) - \ln \left( 1 + x ^ { 2 } \right) } { 6 } + C−62x3tan−1x+(1+x2) −ln(1+x2) +C B) −2x3tan−1x−(1+x2) +ln(1+x2) 6+C- \frac { 2 x ^ { 3 } \tan ^ { - 1 } x - \left( 1 + x ^ { 2 } \right) + \ln \left( 1 + x ^ { 2 } \right) } { 6 } + C−62x3tan−1x−(1+x2) +ln(1+x2) +C C) 2x3tan−1x+(1+x2) −ln(1+x2) 6+C\frac { 2 x ^ { 3 } \tan ^ { - 1 } x + \left( 1 + x ^ { 2 } \right) - \ln \left( 1 + x ^ { 2 } \right) } { 6 } + C62x3tan−1x+(1+x2) −ln(1+x2) +C D) 2x3tan−1x−(1+x2) +ln(1+x2) 6+C\frac { 2 x ^ { 3 } \tan ^ { - 1 } x - \left( 1 + x ^ { 2 } \right) + \ln \left( 1 + x ^ { 2 } \right) } { 6 } + C62x3tan−1x−(1+x2) +ln(1+x2) +C E) 2x3tan−1x+(1+x2) +ln(1+x2) 6+C\frac { 2 x ^ { 3 } \tan ^ { - 1 } x + \left( 1 + x ^ { 2 } \right) + \ln \left( 1 + x ^ { 2 } \right) } { 6 } + C62x3tan−1x+(1+x2) +ln(1+x2) +C
Correct Answer:
Verified
Unlock this answer nowGet Access to more Verified Answers free of charge
Q158: The integral Q159: The integral Q160: The integral Q161: The integral Q162: The integral Q164: The integral Q165: The integral Q166: The integral Q167: The integral Q168: The integral Unlock this Answer For Free Now!View this answer and more for free by performing one of the following actionsScan the QR code to install the App and get 2 free unlocksMaximize QR codeUnlock quizzes for free by uploading documentsUpload documents
Q159: The integral Q160: The integral Q161: The integral Q162: The integral Q164: The integral Q165: The integral Q166: The integral Q167: The integral Q168: The integral Unlock this Answer For Free Now!View this answer and more for free by performing one of the following actionsScan the QR code to install the App and get 2 free unlocksMaximize QR codeUnlock quizzes for free by uploading documentsUpload documents
Q160: The integral Q161: The integral Q162: The integral Q164: The integral Q165: The integral Q166: The integral Q167: The integral Q168: The integral Unlock this Answer For Free Now!View this answer and more for free by performing one of the following actionsScan the QR code to install the App and get 2 free unlocksMaximize QR codeUnlock quizzes for free by uploading documentsUpload documents
Q161: The integral Q162: The integral Q164: The integral Q165: The integral Q166: The integral Q167: The integral Q168: The integral Unlock this Answer For Free Now!View this answer and more for free by performing one of the following actionsScan the QR code to install the App and get 2 free unlocksMaximize QR codeUnlock quizzes for free by uploading documentsUpload documents
Q162: The integral Q164: The integral Q165: The integral Q166: The integral Q167: The integral Q168: The integral Unlock this Answer For Free Now!View this answer and more for free by performing one of the following actionsScan the QR code to install the App and get 2 free unlocksMaximize QR codeUnlock quizzes for free by uploading documentsUpload documents
Q164: The integral Q165: The integral Q166: The integral Q167: The integral Q168: The integral Unlock this Answer For Free Now!View this answer and more for free by performing one of the following actionsScan the QR code to install the App and get 2 free unlocksMaximize QR codeUnlock quizzes for free by uploading documentsUpload documents
Q165: The integral Q166: The integral Q167: The integral Q168: The integral Unlock this Answer For Free Now!View this answer and more for free by performing one of the following actionsScan the QR code to install the App and get 2 free unlocksMaximize QR codeUnlock quizzes for free by uploading documentsUpload documents
Q166: The integral Q167: The integral Q168: The integral Unlock this Answer For Free Now!View this answer and more for free by performing one of the following actionsScan the QR code to install the App and get 2 free unlocksMaximize QR codeUnlock quizzes for free by uploading documentsUpload documents
Q167: The integral Q168: The integral
Q168: The integral
Unlock this Answer For Free Now!
View this answer and more for free by performing one of the following actions
Scan the QR code to install the App and get 2 free unlocks
Unlock quizzes for free by uploading documents