Solved

Determine the Relative Extrema of the Function y=2cosx+sin2xy = 2 \cos x + \sin 2 x

Question 48

Multiple Choice

Determine the relative extrema of the function y=2cosx+sin2xy = 2 \cos x + \sin 2 x on the interval (0,2π) ( 0,2 \pi ) .


A) relative minimum: (5π6,332) \left( \frac { 5 \pi } { 6 } , \frac { 3 \sqrt { 3 } } { 2 } \right) relative maximum: (5π6,332) \left( \frac { 5 \pi } { 6 } , - \frac { 3 \sqrt { 3 } } { 2 } \right)
B) relative minimum: (5π6,332) \left( \frac { 5 \pi } { 6 } , - \frac { 3 \sqrt { 3 } } { 2 } \right) relative maximum: (π6,332) \left( \frac { \pi } { 6 } , \frac { 3 \sqrt { 3 } } { 2 } \right)
C) relative minimum: (π6,332) \left( \frac { \pi } { 6 } , - \frac { 3 \sqrt { 3 } } { 2 } \right) relative maximum: (5π6,332) \left( \frac { 5 \pi } { 6 } , \frac { 3 \sqrt { 3 } } { 2 } \right)
D) relative minimum: (π6,332) \left( \frac { \pi } { 6 } , \frac { 3 \sqrt { 3 } } { 2 } \right) relative maximum: (5π6,332) \left( \frac { 5 \pi } { 6 } , - \frac { 3 \sqrt { 3 } } { 2 } \right)
E) relative minimum: (5π6,332) \left( \frac { 5 \pi } { 6 } , \frac { 3 \sqrt { 3 } } { 2 } \right) relative maximum: (π6,332) \left( \frac { \pi } { 6 } , - \frac { 3 \sqrt { 3 } } { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents