Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Mathematics
Study Set
Thomas Calculus Early Transcendentals
Quiz 10: First-Order Differential Equations
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Question 1
Multiple Choice
Match the differential equation with the appropriate slope field. -
y
′
=
(
y
+
3
)
(
y
−
3
)
y ^ { \prime } = ( y + 3 ) ( y - 3 )
y
′
=
(
y
+
3
)
(
y
−
3
)
Question 2
Multiple Choice
Match the differential equation with the appropriate slope field. -
y
′
=
x
−
y
\mathrm { y } ^ { \prime } = \mathrm { x } - \mathrm { y }
y
′
=
x
−
y
Question 3
Essay
Obtain a slope field and add to its graphs of the solution curves passing through the given points. -
y
′
=
3
(
y
−
1
)
 withÂ
(
2
,
0
)
y ^ { \prime } = 3 ( y - 1 ) \text { with } ( 2,0 )
y
′
=
3
(
y
−
1
)
 withÂ
(
2
,
0
)
Question 4
Multiple Choice
Use Euler's method to calculate the first three approximations to the given initial value problem for the specified increment size. Round your results to four decimal places. -
y
′
=
y
−
e
x
−
1
,
y
(
1
)
=
2
,
d
x
=
0.5
y ^ { \prime } = y - e ^ { x } - 1 , y ( 1 ) = 2 , d x = 0.5
y
′
=
y
−
e
x
−
1
,
y
(
1
)
=
2
,
d
x
=
0.5
Question 5
Essay
Obtain a slope field and add to its graphs of the solution curves passing through the given points. -
y
′
=
2
y
x
 withÂ
(
−
2
,
0
)
\mathrm { y } ^ { \prime } = \frac { 2 \mathrm { y } } { \mathrm { x } } \text { with } ( - 2,0 )
y
′
=
x
2
y
​
 withÂ
(
−
2
,
0
)
Question 6
Multiple Choice
Match the differential equation with the appropriate slope field. -
y
′
=
x
2
−
y
2
y ^ { \prime } = x ^ { 2 } - y ^ { 2 }
y
′
=
x
2
−
y
2
Question 7
Essay
Obtain a slope field and add to its graphs of the solution curves passing through the given points. -
y
′
=
−
y
 withÂ
(
0
,
2
)
y ^ { \prime } = - y \text { with } ( 0,2 )
y
′
=
−
y
 withÂ
(
0
,
2
)
Question 8
Multiple Choice
Use Euler's method to calculate the first three approximations to the given initial value problem for the specified increment size. Round your results to four decimal places. -
y
′
=
y
2
(
1
−
2
x
)
,
y
(
−
1
)
=
−
1
,
d
x
=
0.5
y ^ { \prime } = y ^ { 2 } ( 1 - 2 x ) , y ( - 1 ) = - 1 , d x = 0.5
y
′
=
y
2
(
1
−
2
x
)
,
y
(
−
1
)
=
−
1
,
d
x
=
0.5
Question 9
Multiple Choice
Solve. Round your results to four decimal places. -Use the Euler method with
d
x
=
0.5
\mathrm { dx } = 0.5
dx
=
0.5
to estimate
y
(
5
)
\mathrm { y } ( 5 )
y
(
5
)
if
y
′
=
y
2
/
2
x
\mathrm { y } ^ { \prime } = \mathrm { y } ^ { 2 } / \sqrt { 2 \mathrm { x } }
y
′
=
y
2
/
2
x
​
and
y
(
4
)
=
−
3
\mathrm { y } ( 4 ) = - 3
y
(
4
)
=
−
3
. What is the exact value of
y
(
\mathrm { y } (
y
(
5) ?
Question 10
Multiple Choice
Solve. Round your results to four decimal places. -Use the Euler method with
d
x
=
0.2
\mathrm { dx } = 0.2
dx
=
0.2
to estimate
y
(
3
)
\mathrm { y } ( 3 )
y
(
3
)
if
y
′
=
−
y
\mathrm { y } ^ { \prime } = - \mathrm { y }
y
′
=
−
y
and
y
(
2
)
=
2
\mathrm { y } ( 2 ) = 2
y
(
2
)
=
2
. What is the exact value of
y
(
3
)
\mathrm { y } ( 3 )
y
(
3
)
?
Question 11
Multiple Choice
Use Euler's method to calculate the first three approximations to the given initial value problem for the specified increment size. Round your results to four decimal places. -y = 2xy - 2y, y(2) = 3, dx = 0.2
Question 12
Multiple Choice
Use Euler's method to calculate the first three approximations to the given initial value problem for the specified increment size. Round your results to four decimal places. -
y
′
=
1
+
y
x
,
y
(
2
)
=
−
3
,
d
x
=
0.5
y ^ { \prime } = 1 + \frac { y } { x } , y ( 2 ) = - 3 , d x = 0.5
y
′
=
1
+
x
y
​
,
y
(
2
)
=
−
3
,
d
x
=
0.5
Question 13
Multiple Choice
Match the differential equation with the appropriate slope field. -
y
′
=
x
y
y ^ { \prime } = \frac { x } { y }
y
′
=
y
x
​
Question 14
Essay
Obtain a slope field and add to its graphs of the solution curves passing through the given points. -
y
′
=
y
(
1
−
y
)
 withÂ
(
0
,
−
1
)
y ^ { \prime } = y ( 1 - y ) \text { with } ( 0 , - 1 )
y
′
=
y
(
1
−
y
)
 withÂ
(
0
,
−
1
)
Question 15
Multiple Choice
Solve. Round your results to four decimal places. -Use the Euler method with
d
x
=
0.2
d x = 0.2
d
x
=
0.2
to estimate
y
(
3
)
y ( 3 )
y
(
3
)
if
y
′
=
−
y
/
x
y ^ { \prime } = - y / x
y
′
=
−
y
/
x
and
y
(
2
)
=
3
y ( 2 ) = 3
y
(
2
)
=
3
. What is the exact value of
y
(
3
)
y ( 3 )
y
(
3
)
?
Question 16
Multiple Choice
Match the differential equation with the appropriate slope field. -
y
′
=
y
(
y
+
2
)
(
y
−
2
)
y ^ { \prime } = y ( y + 2 ) ( y - 2 )
y
′
=
y
(
y
+
2
)
(
y
−
2
)
Question 17
Essay
Obtain a slope field and add to its graphs of the solution curves passing through the given points. -
y
′
=
−
y
2
 withÂ
(
0
,
1
)
y ^ { \prime } = - y ^ { 2 } \text { with } ( 0,1 )
y
′
=
−
y
2
 withÂ
(
0
,
1
)
Question 18
Multiple Choice
Use Euler's method to calculate the first three approximations to the given initial value problem for the specified increment size. Round your results to four decimal places. -y = -x(1 - y) , y(2) = 3, dx = 0.2