Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Mathematics
Study Set
Trigonometry Study Set 1
Quiz 4: Graphs of the Circular Functions
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Practice Exam
Learn
Question 81
Multiple Choice
The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph.
A)
y
=
4
cos
(
1
2
x
)
y = 4 \cos \left( \frac { 1 } { 2 } x \right)
y
=
4
cos
(
2
1
x
)
B)
y
=
−
4
cos
(
2
x
)
y = - 4 \cos ( 2 x )
y
=
−
4
cos
(
2
x
)
C)
y
=
−
4
cos
(
1
2
x
)
y = - 4 \cos \left( \frac { 1 } { 2 } x \right)
y
=
−
4
cos
(
2
1
x
)
D)
y
=
4
sin
(
2
x
)
y = 4 \sin ( 2 x )
y
=
4
sin
(
2
x
)
-The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph.
Question 82
Multiple Choice
Graph the function over a one-period interval. -
y
=
1
2
sin
(
x
+
π
)
y = \frac { 1 } { 2 } \sin ( x + \pi )
y
=
2
1
sin
(
x
+
π
)
Question 83
Multiple Choice
Graph the function. -
y
=
−
2
−
tan
(
x
+
π
4
)
y=-2-\tan \left(x+\frac{\pi}{4}\right)
y
=
−
2
−
tan
(
x
+
4
π
)
Question 84
Multiple Choice
Solve the problem. -The minimum length
L
\mathrm { L }
L
of a highway sag curve can be computed by
L
=
(
θ
2
−
θ
1
)
S
2
200
(
h
+
S
tan
α
)
\mathrm { L } = \frac { \left( \theta _ { 2 } - \theta _ { 1 } \right) \mathrm { S } ^ { 2 } } { 200 ( \mathrm {~h} + \mathrm { S } \tan \alpha ) }
L
=
200
(
h
+
S
t
a
n
α
)
(
θ
2
−
θ
1
)
S
2
where
θ
1
\theta _ { 1 }
θ
1
is the downhill grade in degrees
(
θ
1
<
0
∘
)
,
θ
2
\left( \theta _ { 1 } < 0 ^ { \circ } \right) , \theta _ { 2 }
(
θ
1
<
0
∘
)
,
θ
2
is the uphill grade in degrees
(
θ
2
>
0
∘
)
\left( \theta _ { 2 } > 0 ^ { \circ } \right)
(
θ
2
>
0
∘
)
,
S
\mathrm { S }
S
is the safe stopping distance for a given speed limit,
h
h
h
is the height of the headlights, and
α
\alpha
α
is the alignment of the headlights in degrees. Compute
L
L
L
for a 55-mph speed limit, where
h
=
1.9
f
t
h = 1.9 \mathrm { ft }
h
=
1.9
ft
,
α
=
0.
7
∘
,
θ
1
=
−
5
∘
,
θ
2
=
4
∘
\alpha = 0.7 ^ { \circ } , \theta _ { 1 } = - 5 ^ { \circ } , \theta _ { 2 } = 4 ^ { \circ }
α
=
0.
7
∘
,
θ
1
=
−
5
∘
,
θ
2
=
4
∘
, and
S
=
336
f
t
S = 336 \mathrm { ft }
S
=
336
ft
. Round your answer to the nearest foot.
Question 85
Multiple Choice
Solve the problem. -A weight attached to a spring is pulled down 5 inches below the equilibrium position. Assuming that the period of the system is
1
3
s
e
c
\frac { 1 } { 3 } \mathrm { sec }
3
1
sec
, what is the frequency of the system?
Question 86
Multiple Choice
Solve the problem. -A generator produces an alternating current according to the equation I = 48 sin 109πt, where t is time in seconds and I is the current in amperes. What is the smallest time t such that I = 24?