Solved

A College Admissions Counselor Was Interested in Finding Out How

Question 13

Essay

A college admissions counselor was interested in finding out how well high school grade point averages (HS GPA) predict first-year college GPAs (FY GPA). A random sample of data from first-year students was reviewed to obtain high school and first-year college GPAs. The data are shown below: HS GPA 3.823.903.203.403.883.503.603.70FY GPA3.753.452.602.953.502.763.103.40\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline \text {HS GPA }& 3.82 & 3.90 & 3.20 & 3.40 & 3.88 & 3.50 & 3.60 & 3.70 \\\hline \text {FY GPA} & 3.75 & 3.45 & 2.60 & 2.95 & 3.50 & 2.76 & 3.10 & 3.40 \\\hline\end{array}

 HS GPA4.003.303.503.803.874.003.203.82 FY GPA 3.902.703.003.003.103.772.803.54\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline\text { HS GPA} & 4.00 & 3.30 & 3.50 & 3.80 & 3.87 & 4.00 & 3.20 & 3.82 \\\hline\text { FY GPA }& 3.90 & 2.70 & 3.00 & 3.00 & 3.10 & 3.77 & 2.80 & 3.54 \\\hline\end{array}

Dependent variable is: \quad FY GPA
No Selector
R \mathrm{R} squared =75.4%R =75.4 \% \quad \mathrm{R} squared (adjusted) =73.6% =73.6 \%
s=0.2118 s=0.2118 with 162=14 16-2=14 degrees of freedom

 Source  Sum of Squares  df  Mean Square  F-ratio  Regression 1.9228311.9228342.9 Residual 0.627867140.044848 Variable  Coefticient  s.e. of Coeft  t-ratio  prob  Constant 1.564100.73062.140.0504 HS GPA 1.305270.19936.550.0001 \begin{array}{llrrr}\text { Source } & \text { Sum of Squares } & \text { df } & \text { Mean Square } & \text { F-ratio } \\ \text { Regression } & 1.92283 & 1 & 1.92283 & 42.9 \\ \text { Residual } & 0.627867 & 14 & 0.044848 & \\ & & & & \\ \text { Variable } & \text { Coefticient } & \text { s.e. of Coeft } & \text { t-ratio } & \text { prob } \\ \text { Constant } & -1.56410 & 0.7306 & -2.14 & 0.0504 \\ \text { HS GPA } & 1.30527 & 0.1993 & 6.55 & \leq 0.0001\end{array}

 A college admissions counselor was interested in finding out how well high school grade point averages (HS GPA) predict first-year college GPAs (FY GPA). A random sample of data from first-year students was reviewed to obtain high school and first-year college GPAs. The data are shown below:  \begin{array}{|l|l|l|l|l|l|l|l|l|} \hline \text {HS GPA }& 3.82 & 3.90 & 3.20 & 3.40 & 3.88 & 3.50 & 3.60 & 3.70 \\ \hline \text {FY GPA} & 3.75 & 3.45 & 2.60 & 2.95 & 3.50 & 2.76 & 3.10 & 3.40 \\ \hline \end{array}    \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline\text { HS GPA} & 4.00 & 3.30 & 3.50 & 3.80 & 3.87 & 4.00 & 3.20 & 3.82 \\ \hline\text { FY GPA }& 3.90 & 2.70 & 3.00 & 3.00 & 3.10 & 3.77 & 2.80 & 3.54 \\ \hline \end{array}   Dependent variable is:   \quad   FY GPA No Selector   \mathrm{R}   squared   =75.4 \% \quad \mathrm{R}   squared (adjusted)   =73.6 \%     s=0.2118   with   16-2=14   degrees of freedom    \begin{array}{llrrr}\text { Source } & \text { Sum of Squares } & \text { df } & \text { Mean Square } & \text { F-ratio } \\ \text { Regression } & 1.92283 & 1 & 1.92283 & 42.9 \\ \text { Residual } & 0.627867 & 14 & 0.044848 & \\ & & & & \\ \text { Variable } & \text { Coefticient } & \text { s.e. of Coeft } & \text { t-ratio } & \text { prob } \\ \text { Constant } & -1.56410 & 0.7306 & -2.14 & 0.0504 \\ \text { HS GPA } & 1.30527 & 0.1993 & 6.55 & \leq 0.0001\end{array}      -Create and interpret a 95% confidence interval for the slope of the regression line.
-Create and interpret a 95% confidence interval for the slope of the regression line.

Correct Answer:

verifed

Verified

Degrees of freedom blured image
blured image confidenc...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents