Solved

Find All Specified Roots ii
A) 1,1,i,i1 , - 1 , i , - i

Question 302

Multiple Choice

Find all specified roots.
-Eighth roots of ii .


A) 1,1,i,i1 , - 1 , i , - i
B) 12+12i,1212i,12+12i,1212i\frac { 1 } { \sqrt { 2 } } + \frac { 1 } { \sqrt { 2 } } \mathrm { i } , \frac { 1 } { \sqrt { 2 } } - \frac { 1 } { \sqrt { 2 } } \mathrm { i } , - \frac { 1 } { \sqrt { 2 } } + \frac { 1 } { \sqrt { 2 } } \mathrm { i } , - \frac { 1 } { \sqrt { 2 } } - \frac { 1 } { \sqrt { 2 } } \mathrm { i }
C) cisπ16,cis5π16,cis9π16,cis13π16,cis17π16\operatorname { cis } \frac { \pi } { 16 } , \operatorname { cis } \frac { 5 \pi } { 16 } , \operatorname { cis } \frac { 9 \pi } { 16 } , \operatorname { cis } \frac { 13 \pi } { 16 } , \operatorname { cis } \frac { 17 \pi } { 16 } , cis 21π16,cis25π16,cis29π16\frac { 21 \pi } { 16 } , \operatorname { cis } \frac { 25 \pi } { 16 } , \operatorname { cis } \frac { 29 \pi } { 16 }
D) 1,1,i,i,12+12i,1212i,12+12i,1212i1 , - 1 , i , - i , \frac { 1 } { \sqrt { 2 } } + \frac { 1 } { \sqrt { 2 } } \mathrm { i } , \frac { 1 } { \sqrt { 2 } } - \frac { 1 } { \sqrt { 2 } } \mathrm { i } , - \frac { 1 } { \sqrt { 2 } } + \frac { 1 } { \sqrt { 2 } } \mathrm { i } , - \frac { 1 } { \sqrt { 2 } } - \frac { 1 } { \sqrt { 2 } } \mathrm { i }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents