Solved

Graph the Polar Equations of Conics
- r=222cosθr = \frac { 2 } { 2 - 2 \cos \theta } \quad

Question 209

Multiple Choice

Graph the Polar Equations of Conics
- r=222cosθr = \frac { 2 } { 2 - 2 \cos \theta } \quad Identify the directrix and vertex.
 Graph the Polar Equations of Conics - r = \frac { 2 } { 2 - 2 \cos \theta } \quad  Identify the directrix and vertex.    A)  directrix: 1 unit(s)  to the left of the pole at  x = - 1  vertex:  \left( \frac { 1 } { 2 } , \pi \right)     B)  directrix: 1 unit(s)  to the right of the pole at  x = 1  vertex:  \left( \frac { 1 } { 2 } , 0 \right)     C)  directrix: 1 unit(s)  above the pole at  \mathrm { y } = 1  vertex:  \left( \frac { 1 } { 2 } , \frac { \pi } { 2 } \right)     D)  directrix: 1 unit(s)  below the pole at  \mathrm { y } = - 1  vertex:  \left( \frac { 1 } { 2 } , \frac { 3 \pi } { 2 } \right)


A) directrix: 1 unit(s) to the left of
the pole at x=1x = - 1
vertex: (12,π) \left( \frac { 1 } { 2 } , \pi \right)
 Graph the Polar Equations of Conics - r = \frac { 2 } { 2 - 2 \cos \theta } \quad  Identify the directrix and vertex.    A)  directrix: 1 unit(s)  to the left of the pole at  x = - 1  vertex:  \left( \frac { 1 } { 2 } , \pi \right)     B)  directrix: 1 unit(s)  to the right of the pole at  x = 1  vertex:  \left( \frac { 1 } { 2 } , 0 \right)     C)  directrix: 1 unit(s)  above the pole at  \mathrm { y } = 1  vertex:  \left( \frac { 1 } { 2 } , \frac { \pi } { 2 } \right)     D)  directrix: 1 unit(s)  below the pole at  \mathrm { y } = - 1  vertex:  \left( \frac { 1 } { 2 } , \frac { 3 \pi } { 2 } \right)
B) directrix: 1 unit(s) to the right of
the pole at x=1x = 1
vertex: (12,0) \left( \frac { 1 } { 2 } , 0 \right)
 Graph the Polar Equations of Conics - r = \frac { 2 } { 2 - 2 \cos \theta } \quad  Identify the directrix and vertex.    A)  directrix: 1 unit(s)  to the left of the pole at  x = - 1  vertex:  \left( \frac { 1 } { 2 } , \pi \right)     B)  directrix: 1 unit(s)  to the right of the pole at  x = 1  vertex:  \left( \frac { 1 } { 2 } , 0 \right)     C)  directrix: 1 unit(s)  above the pole at  \mathrm { y } = 1  vertex:  \left( \frac { 1 } { 2 } , \frac { \pi } { 2 } \right)     D)  directrix: 1 unit(s)  below the pole at  \mathrm { y } = - 1  vertex:  \left( \frac { 1 } { 2 } , \frac { 3 \pi } { 2 } \right)
C) directrix: 1 unit(s) above
the pole at y=1\mathrm { y } = 1
vertex: (12,π2) \left( \frac { 1 } { 2 } , \frac { \pi } { 2 } \right)
 Graph the Polar Equations of Conics - r = \frac { 2 } { 2 - 2 \cos \theta } \quad  Identify the directrix and vertex.    A)  directrix: 1 unit(s)  to the left of the pole at  x = - 1  vertex:  \left( \frac { 1 } { 2 } , \pi \right)     B)  directrix: 1 unit(s)  to the right of the pole at  x = 1  vertex:  \left( \frac { 1 } { 2 } , 0 \right)     C)  directrix: 1 unit(s)  above the pole at  \mathrm { y } = 1  vertex:  \left( \frac { 1 } { 2 } , \frac { \pi } { 2 } \right)     D)  directrix: 1 unit(s)  below the pole at  \mathrm { y } = - 1  vertex:  \left( \frac { 1 } { 2 } , \frac { 3 \pi } { 2 } \right)
D) directrix: 1 unit(s) below
the pole at y=1\mathrm { y } = - 1
vertex: (12,3π2) \left( \frac { 1 } { 2 } , \frac { 3 \pi } { 2 } \right)
 Graph the Polar Equations of Conics - r = \frac { 2 } { 2 - 2 \cos \theta } \quad  Identify the directrix and vertex.    A)  directrix: 1 unit(s)  to the left of the pole at  x = - 1  vertex:  \left( \frac { 1 } { 2 } , \pi \right)     B)  directrix: 1 unit(s)  to the right of the pole at  x = 1  vertex:  \left( \frac { 1 } { 2 } , 0 \right)     C)  directrix: 1 unit(s)  above the pole at  \mathrm { y } = 1  vertex:  \left( \frac { 1 } { 2 } , \frac { \pi } { 2 } \right)     D)  directrix: 1 unit(s)  below the pole at  \mathrm { y } = - 1  vertex:  \left( \frac { 1 } { 2 } , \frac { 3 \pi } { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents