Solved

Rotate the Axes So That the New Equation Contains No 17x212xy+8y268x+24y12=017 x ^ { 2 } - 12 x y + 8 y ^ { 2 } - 68 x + 24 y - 12 = 0

Question 153

Multiple Choice

Rotate the axes so that the new equation contains no xy-term. Discuss the new equation.
- 17x212xy+8y268x+24y12=017 x ^ { 2 } - 12 x y + 8 y ^ { 2 } - 68 x + 24 y - 12 = 0


A) θ=26.6\theta = 26.6 ^ { \circ }
x24+y216=1\frac { x ^ { \prime 2 } } { 4 } + \frac { y ^ { \prime 2 } } { 16 } = 1
ellipse
center at (0,0) ( 0,0 )
major axis is yy ^ { \prime } - axis
vertices at (0,±4) ( 0 , \pm 4 )
B) θ=63.4\theta = 63.4 ^ { \circ }
(x255) 216+(y+455) 24=1\frac { \left( x ^ { \prime } - \frac { 2 \sqrt { 5 } } { 5 } \right) ^ { 2 } } { 16 } + \frac { \left( y ^ { \prime } + \frac { 4 \sqrt { 5 } } { 5 } \right) ^ { 2 } } { 4 } = 1
ellipse
center at (255,455) \left( \frac { 2 \sqrt { 5 } } { 5 } , - \frac { 4 \sqrt { 5 } } { 5 } \right)
major axis is xx ^ { \prime } -axis
vertices at (4+255,455) \left( 4 + \frac { 2 \sqrt { 5 } } { 5 } , - \frac { 4 \sqrt { 5 } } { 5 } \right) and (4+255,455) \left( - 4 + \frac { 2 \sqrt { 5 } } { 5 } , - \frac { 4 \sqrt { 5 } } { 5 } \right)
C) θ=63.4\theta = 63.4 ^ { \circ }
x2=16yx ^ { \prime 2 } = - 16 y ^ { \prime }
parabola
vertex at (0,0) ( 0,0 )
focus at (0,4) ( 0 , - 4 )
D) θ=63.4\theta = 63.4 ^ { \circ }
x216y24=1\frac { x ^ { \prime 2 } } { 16 } - \frac { y ^ { \prime 2 } } { 4 } = 1
hyperbola
center at (0,0) ( 0,0 )
transverse axis is the xx ^ { \prime } -axis
vertices at (±4,0) ( \pm 4,0 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents