Solved

Rotate the Axes So That the New Equation Contains No x2+xy+y23y6=0x ^ { 2 } + x y + y ^ { 2 } - 3 y - 6 = 0

Question 154

Multiple Choice

Rotate the axes so that the new equation contains no xy-term. Discuss the new equation.
- x2+xy+y23y6=0x ^ { 2 } + x y + y ^ { 2 } - 3 y - 6 = 0


A)
θ=45y2=18x parabola  vertex at (0,0)  focus at (92,0) \begin{array}{l}\theta=45^{\circ} \\y^{\prime 2}=-18 x^{\prime} \\\text { parabola } \\\text { vertex at }(0,0) \\\text { focus at }\left(-\frac{9}{2}, 0\right) \end{array}

B)
θ=45(x22) 2+(y322) 215=1\frac{\theta=45^{\circ}}{\left(x^{\prime}-\frac{\sqrt{2}}{2}\right) ^{2}}+\frac{\left(y^{\prime}-\frac{3 \sqrt{2}}{2}\right) ^{2}}{15}=1
ellipse center at (22,322) \left(\frac{\sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}\right)
major axis is y y^{\prime} -axis vertices at (22,322) \left(\frac{\sqrt{2}}{2},-\frac{3 \sqrt{2}}{2}\right) and (22,922) \left(\frac{\sqrt{2}}{2}, \frac{9 \sqrt{2}}{2}\right)

C) θ=45\theta=45^{\circ}
x26y28=1\frac{x^{\prime 2}}{6}-\frac{y^{\prime 2}}{8}=1
hyperbola
center at (0,0) (0,0)
transverse axis is the x \mathrm{x}^{\prime} -axis
vertices at (±6,0) (\pm \sqrt{6}, 0)

D) θ=45x23+y24=1\begin{array}{l}\theta=45^{\circ} \\\frac{x^{\prime 2}}{3}+\frac{y^{2}}{4}=1\end{array}
ellipse
center at (0,0) (0,0)
major axis is y y^{\prime} -axis
vertices at (0,±2) (0, \pm 2)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents