Solved

On an Exam, Students Were Asked to Evaluate C(yi+xjx2+y2)dr\int _ { C } \left( \frac { - y \vec { i } + x \vec { j } } { x ^ { 2 } + y ^ { 2 } } \right) \cdot d \vec { r }

Question 61

Essay

On an exam, students were asked to evaluate C(yi+xjx2+y2)dr\int _ { C } \left( \frac { - y \vec { i } + x \vec { j } } { x ^ { 2 } + y ^ { 2 } } \right) \cdot d \vec { r } , where C is the circle centered at the origin of radius r: x=rcost,y=rsint,0t2πx = r \cos t , y = r \sin t , 0 \leq t \leq 2 \pi .One student wrote:
"Since y(yx2+y2)=y2x2x2+y2,x(xx2+y2)=y2x2x2+y2\frac { \partial } { \partial y } \left( \frac { - y } { x ^ { 2 } + y ^ { 2 } } \right) = \frac { y ^ { 2 } - x ^ { 2 } } { x ^ { 2 } + y ^ { 2 } } , \frac { \partial } { \partial x } \left( \frac { x } { x ^ { 2 } + y ^ { 2 } } \right) = \frac { y ^ { 2 } - x ^ { 2 } } { x ^ { 2 } + y ^ { 2 } } Using Green's Theorem, C(yi+xjx2+y2)dr=D0dA=0\int _ { C } \left( \frac { - y \vec { i } + x \vec { j } } { x ^ { 2 } + y ^ { 2 } } \right) \cdot d \vec { r } = \int _ { D } 0 d A = 0 ."
Do you agree with the student?

Correct Answer:

verifed

Verified

The answer is wrong.Since the ...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents