Solved

Let F=x(1+z)i+7y(1+z)j { \vec { F } } = x ( 1 + z ) \vec { i } + 7 y ( 1 + z ) \vec { j }

Question 23

Multiple Choice

Let F=x(1+z) i+7y(1+z) j { \vec { F } } = x ( 1 + z ) \vec { i } + 7 y ( 1 + z ) \vec { j } Show that the parametric surface S given by x = s cos t, y = s sin t, z = s, for 1 \le s \le 2, 0 \le t \le 2 π\pi , oriented downward can also be written as the surface z=x2+y2,1z2z = \sqrt { x ^ { 2 } + y ^ { 2 } } , 1 \leq z \leq 2 . Which of the following iterated integrals calculates the flux of F\vec { F } across S? Select all that apply.


A) T(x2+7y2(1+x2+y2) x2+y2dxdy\int _ { T } \frac { \left( x ^ { 2 } + 7 y ^ { 2 } \left( 1 + \sqrt { x ^ { 2 } + y ^ { 2 } } \right) \right. } { \sqrt { x ^ { 2 } + y ^ { 2 } } } d x d y
B) 02π12r2(1+r) drdθ\int _ { 0 } ^ { 2 \pi } \int _ { 1 } ^ { 2 } r ^ { 2 } ( 1 + r ) d r d \theta
C) 02π12r2(1+r) ndθdr\int _ { 0 } ^ { 2 \pi } \int _ { 1 } ^ { 2 } r ^ { 2 } ( 1 + r ) n d \theta d r
D) 02π12r2(1+r) (cos2θ+bsin2θ) drdθ\int _ { 0 } ^ { 2 \pi } \int _ { 1 } ^ { 2 } r ^ { 2 } ( 1 + r ) \left( \cos ^ { 2 } \theta + b \sin ^ { 2 } \theta \right) d r d \theta
E) T(x2+y2) (1+x2+y2) x2+y2dxdy- \int _ { T } \frac { \left( x ^ { 2 } + y ^ { 2 } \right) \left( 1 + \sqrt { x ^ { 2 } + y ^ { 2 } } \right) } { \sqrt { x ^ { 2 } + y ^ { 2 } } } d x d y

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents