Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Business
Study Set
Management Science
Quiz 17: Linear Programming: Simplex Method
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Practice Exam
Learn
Question 21
Essay
Solve the following problem by the simplex method. Max 100x
1
+ 120x
2
+ 85x
3
s.t. 3x
1
+ 1x
2
+ 6x
3
≤
\le
≤
120 5x
1
+ 8x
2
+ 2x
3
≤
\le
≤
160 x
1
, x
2
, x
3
≥
\ge
≥
0
Question 22
True/False
A solution is optimal when all values in the c
j
-z
j
row of the simplex tableau are either zero or positive.
Question 23
True/False
The variable to remove from the current basis is the variable with the smallest positive c
j
- z
j
value.
Question 24
True/False
Artificial variables are added for the purpose of obtaining an initial basic feasible solution.
Question 25
True/False
Coefficients in a nonbasic column in a simplex tableau indicate the amount of decrease in the current basic variables when the value of the nonbasic variable is increased from 0 to 1.
Question 26
True/False
We recognize infeasibility when one or more of the artificial variables do not remain in the solution at a positive value.
Question 27
Short Answer
What is an artificial variable? Why is it necessary?
Question 28
True/False
If a variable is not in the basis, its value is 0.
Question 29
Essay
For the special cases of infeasibility, unboundedness, and alternate optimal solutions, tell what you would do next with your linear programming model if the case occurred.
Question 30
Short Answer
What is the criterion for entering a new variable into the basis?
Question 31
Short Answer
A portion of a simplex tableau is
x
1
 B asisÂ
C
B
20
x
2
25
.
2
Â
s
2
0
3
z
j
5
C
j
−
z
j
15
\begin{array} { c c | c } && \mathrm { x } _ { 1 }\\\text { B asis } & \mathrm { C } _ { \mathrm { B } } & 20 \\\hline \mathrm { x } _ { 2 } & 25 & .2\\\mathrm {~s} _ { 2 } & 0 & 3\\\hline& \mathrm { z } _ { \mathrm { j } } & 5 \\& \mathrm { C } _ { \mathrm { j } } - \mathrm { z } _ { \mathrm { j } } & 15\end{array}
 B asisÂ
x
2
​
Â
s
2
​
​
C
B
​
25
0
z
j
​
C
j
​
−
z
j
​
​
x
1
​
20
.2
3
5
15
​
​
Give a complete explanation of the meaning of the z
1
= 5 value as it relates to x
2
and s
2
.
Question 32
Essay
Solve the following problem by the simplex method. Max 14x
1
+ 14.5x
2
+ 18x
3
s.t. x
1
+ 2x
2
+ 2.5x
3
≤
\le
≤
50 x
1
+ x
2
+ 1.5x
3
≤
\le
≤
30 x
1
, x
2
, x
3
≥
\ge
≥
0
Question 33
Essay
A simplex table is shown below.
x
1
x
2
x
3
s
1
s
2
s
3
 BasisÂ
c
B
5
4
8
0
0
0
s
1
0
2
/
5
−
3
/
5
0
1
−
2
/
5
0
4
x
3
8
4
/
5
4
/
5
1
0
1
/
5
0
8
s
3
0
4
/
5
9
/
5
0
0
1
/
5
1
10
z
j
32
/
5
32
/
5
8
0
8
/
5
0
64
c
j
−
z
j
−
7
/
5
−
12
/
5
0
0
−
8
/
5
0
\begin{array} { c c | c c c c c c | c } & & x _ { 1 } & x _ { 2 } & x _ { 3 } & s _ { 1 } & s _ { 2 } & s _ { 3 } & \\\text { Basis } & c _ { B } & 5 & 4 & 8 & 0 & 0 & 0 & \\\hline s _ { 1 } & 0 & 2 / 5 & - 3 / 5 & 0 & 1 & - 2 / 5 & 0 & 4 \\\mathrm { x } _ { 3 } & 8 & 4 / 5 & 4 / 5 & 1 & 0 & 1 / 5 & 0 & 8 \\s _ { 3 } & 0 & 4 / 5 & 9 / 5 & 0 & 0 & 1 / 5 & 1 & 10 \\\hline & z _ { j } & 32 / 5 & 32 / 5 & 8 & 0 & 8 / 5 & 0 & 64 \\& c _ { j } - z _ { j } & - 7 / 5 & - 12 / 5 & 0 & 0 & - 8 / 5 & 0 &\end{array}
 BasisÂ
s
1
​
x
3
​
s
3
​
​
c
B
​
0
8
0
z
j
​
c
j
​
−
z
j
​
​
x
1
​
5
2/5
4/5
4/5
32/5
−
7/5
​
x
2
​
4
−
3/5
4/5
9/5
32/5
−
12/5
​
x
3
​
8
0
1
0
8
0
​
s
1
​
0
1
0
0
0
0
​
s
2
​
0
−
2/5
1/5
1/5
8/5
−
8/5
​
s
3
​
0
0
0
1
0
0
​
4
8
10
64
​
​
a.What is the current complete solution? b.The 32/5 for z
1
is composed of 0 + 8(4/5) + 0.Explain the meaning of this number. c.Explain the meaning of the -12/5 value for c
2
- z
2
.
Question 34
True/False
The coefficient of an artificial variable in the objective function is zero.
Question 35
True/False
The purpose of row operations is to create a unit column for the entering variable while maintaining unit columns for the remaining basic variables.
Question 36
True/False
At each iteration of the simplex procedure, a new variable becomes basic and a currently basic variable becomes nonbasic, preserving the same number of basic variables and improving the value of the objective function.