Solved

Let E Be the Solid That Lies Below the Sphere x2+y2+z2=a2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = a ^ { 2 }

Question 59

Multiple Choice

Let E be the solid that lies below the sphere x2+y2+z2=a2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = a ^ { 2 } and above the cone ϕ=β\phi = \beta , where 0<β<π20 < \beta < \frac { \pi } { 2 } . Find the value of the triple integral EzdV\iiint _ { E } z d V .


A) πa2sinβ\pi a ^ { 2 } \sin \beta

B) . 12πa2sinβ\frac { 1 } { 2 } \pi a ^ { 2 } \sin \beta
C) πa2sin2β\pi a ^ { 2 } \sin ^ { 2 } \beta
D) 12πa2sin2β\frac { 1 } { 2 } \pi a ^ { 2 } \sin ^ { 2 } \beta
E) 14πa2sin2β\frac { 1 } { 4 } \pi a ^ { 2 } \sin ^ { 2 } \beta
F) 12πα4sin2β\frac { 1 } { 2 } \pi \alpha ^ { 4 } \sin ^ { 2 } \beta


G) 14πa4sin2β\frac { 1 } { 4 } \pi a ^ { 4 } \sin ^ { 2 } \beta

H) πa4sinβ\pi a ^ { 4 } \sin \beta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents