Solved

Use the Graphs of F and G Below to Evaluate limx2[f(x)+g(x)]\lim _ { x \rightarrow - 2 } [ f ( x ) + g ( x ) ]

Question 87

Essay

Use the graphs of f and g below to evaluate each limit, if it exists. If it does not exist, explain why.  Use the graphs of f and g below to evaluate each limit, if it exists. If it does not exist, explain why.     (a)  \lim _ { x \rightarrow - 2 } [ f ( x ) + g ( x ) ]  (b)  \lim _ { x \rightarrow 2 } \left[ \frac { g ( x ) } { f ( x ) } \right]  (c)  \lim _ { x \rightarrow 1 } [ f ( x ) \cdot g ( x ) ]  (d)  \lim _ { x \rightarrow 0 } \left[ ( x - 3 ) ^ { 2 } \cdot g ( x ) \right]  Use the graphs of f and g below to evaluate each limit, if it exists. If it does not exist, explain why.     (a)  \lim _ { x \rightarrow - 2 } [ f ( x ) + g ( x ) ]  (b)  \lim _ { x \rightarrow 2 } \left[ \frac { g ( x ) } { f ( x ) } \right]  (c)  \lim _ { x \rightarrow 1 } [ f ( x ) \cdot g ( x ) ]  (d)  \lim _ { x \rightarrow 0 } \left[ ( x - 3 ) ^ { 2 } \cdot g ( x ) \right] (a) limx2[f(x)+g(x)]\lim _ { x \rightarrow - 2 } [ f ( x ) + g ( x ) ] (b) limx2[g(x)f(x)]\lim _ { x \rightarrow 2 } \left[ \frac { g ( x ) } { f ( x ) } \right] (c) limx1[f(x)g(x)]\lim _ { x \rightarrow 1 } [ f ( x ) \cdot g ( x ) ] (d) limx0[(x3)2g(x)]\lim _ { x \rightarrow 0 } \left[ ( x - 3 ) ^ { 2 } \cdot g ( x ) \right]

Correct Answer:

verifed

Verified

(a) blured image (b) blured image ...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents