Solved

The Figure Shows a Pendulum with Length L and the Angle

Question 19

Multiple Choice

The figure shows a pendulum with length L and the angle θ\theta from the vertical to the pendulum. It can be shown that θ\theta , as a function of time, satisfies the nonlinear differential equation d2θdt2+gLsinθ=0\frac { d ^ { 2 } \theta } { d t ^ { 2 } } + \frac { g } { L } \sin \theta = 0 where g=9.8 m/s2g = 9.8 \mathrm {~m} / \mathrm { s } ^ { 2 }  is the acceleration due to gravity. For small values of \text { is the acceleration due to gravity. For small values of } θ\theta we can use the linear approximation sinθ=θ\sin \theta = \theta  and then the differential equation becomes linear. Find the equation \text { and then the differential equation becomes linear. Find the equation }  of motion of a pendulum with length 1 m if θ is initially 0.2rad and the initial \text { of motion of a pendulum with length } 1 \mathrm {~m} \text { if } \theta \text { is initially } 0.2 \mathrm { rad } \text { and the initial }  angular velocity is \text { angular velocity is } dθdt=1rad/s\frac { d \theta } { d t } = 1 \mathrm { rad } / \mathrm { s }  The figure shows a pendulum with length L and the angle  \theta  from the vertical to the pendulum. It can be shown that  \theta  , as a function of time, satisfies the nonlinear differential equation  \frac { d ^ { 2 } \theta } { d t ^ { 2 } } + \frac { g } { L } \sin \theta = 0  where  g = 9.8 \mathrm {~m} / \mathrm { s } ^ { 2 }   \text { is the acceleration due to gravity. For small values of }   \theta  we can use the linear approximation  \sin \theta = \theta   \text { and then the differential equation becomes linear. Find the equation }   \text { of motion of a pendulum with length } 1 \mathrm {~m} \text { if } \theta \text { is initially } 0.2 \mathrm { rad } \text { and the initial }   \text { angular velocity is }   \frac { d \theta } { d t } = 1 \mathrm { rad } / \mathrm { s }    A)   \theta ( t )  = 0.2 \cos ( \sqrt { 9.8 } t )  + \frac { 1 } { \sqrt { 9.8 } } \sin ( \sqrt { 9.8 } t )   B)   \theta ( t )  = 0.2 \cos ( \sqrt { 9.8 } t )  + 2 \sin ( \sqrt { 9.8 } t )   C)   \theta ( t )  = 2 \cos ( 9.8 t )  + \frac { 1 } { 9.8 } \sin ( 9.8 t )   D)   \theta ( t )  = \frac { 1 } { 9.8 } \cos ( \sqrt { 9.8 } t )  + 0.2 \sin ( \sqrt { 9.8 } t )   E)   \theta ( t )  = 0.2 \sin ( \sqrt { 9.8 } t )  + \frac { 1 } { \sqrt { 9.8 } } \cos ( \sqrt { 9.8 } t )


A) θ(t) =0.2cos(9.8t) +19.8sin(9.8t) \theta ( t ) = 0.2 \cos ( \sqrt { 9.8 } t ) + \frac { 1 } { \sqrt { 9.8 } } \sin ( \sqrt { 9.8 } t )
B) θ(t) =0.2cos(9.8t) +2sin(9.8t) \theta ( t ) = 0.2 \cos ( \sqrt { 9.8 } t ) + 2 \sin ( \sqrt { 9.8 } t )
C) θ(t) =2cos(9.8t) +19.8sin(9.8t) \theta ( t ) = 2 \cos ( 9.8 t ) + \frac { 1 } { 9.8 } \sin ( 9.8 t )
D) θ(t) =19.8cos(9.8t) +0.2sin(9.8t) \theta ( t ) = \frac { 1 } { 9.8 } \cos ( \sqrt { 9.8 } t ) + 0.2 \sin ( \sqrt { 9.8 } t )
E) θ(t) =0.2sin(9.8t) +19.8cos(9.8t) \theta ( t ) = 0.2 \sin ( \sqrt { 9.8 } t ) + \frac { 1 } { \sqrt { 9.8 } } \cos ( \sqrt { 9.8 } t )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents