Solved

The Initial Value Problem (Lx)d2xdt2(dxdt)2=Lg,x(0)=0,x(0)=0( L - x ) \frac { d ^ { 2 } x } { d t ^ { 2 } } - \left( \frac { d x } { d t } \right) ^ { 2 } = L g , x ( 0 ) = 0 , x ^ { \prime } ( 0 ) = 0

Question 10

Multiple Choice

The initial value problem (Lx) d2xdt2(dxdt) 2=Lg,x(0) =0,x(0) =0( L - x ) \frac { d ^ { 2 } x } { d t ^ { 2 } } - \left( \frac { d x } { d t } \right) ^ { 2 } = L g , x ( 0 ) = 0 , x ^ { \prime } ( 0 ) = 0 is a model of a chain of length LL falling to the ground, where x(t) x ( t ) represents the length of chain on the ground at time tt . The solution for v=dxdtv = \frac { d x } { d t } in terms of xx is


A) v=Lg(L2(Lx) 2) v = \sqrt { L g \left( L ^ { 2 } - ( L - x ) ^ { 2 } \right) }
B) v=(Lg(L2+(Lx) 2) ) /(Lx) v = \left( \operatorname { Lg } \left( L ^ { 2 } + ( L - x ) ^ { 2 } \right) \right) / ( L - x )
C) v=(Lg(L2(Lx) 2) ) /(Lx) v = \left( \operatorname { Lg } \left( L ^ { 2 } - ( L - x ) ^ { 2 } \right) \right) / ( L - x )
D) v=Lg(L2+(Lx) 2) /(Lx) v = \sqrt { L g \left( L ^ { 2 } + ( L - x ) ^ { 2 } \right) } / ( L - x )
E) v=Lg(L2(Lx) 2) /(Lx) v = \sqrt { L g \left( L ^ { 2 } - ( L - x ) ^ { 2 } \right) } / ( L - x )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents