Solved

The Boundary Value Problem rd2udr2+2dudr=0,u(a)=u0,u(b)=u1r \frac { d ^ { 2 } u } { d r ^ { 2 } } + 2 \frac { d u } { d r } = 0 , u ( a ) = u _ { 0 } , u ( b ) = u _ { 1 }

Question 16

Multiple Choice

The boundary value problem rd2udr2+2dudr=0,u(a) =u0,u(b) =u1r \frac { d ^ { 2 } u } { d r ^ { 2 } } + 2 \frac { d u } { d r } = 0 , u ( a ) = u _ { 0 } , u ( b ) = u _ { 1 } is a model for the temperature distribution between two concentric spheres of radii aa and bb , with a<ba < b .The solution of this problem is


A) u=c2+c1/r, where c1=ab(u1u0) /(ba)  and c2=(u1bu0a) /(ba) u = c _ { 2 } + c _ { 1 } / r \text {, where } c _ { 1 } = a b \left( u _ { 1 } - u _ { 0 } \right) / ( b - a ) \text { and } c _ { 2 } = \left( u _ { 1 } b - u _ { 0 } a \right) / ( b - a )
B) u=c2+c1/r, where c1=(u1bu0a) /(ba)  and c2=ab(u1u0) /(ba) u = c _ { 2 } + c _ { 1 } / r \text {, where } c _ { 1 } = \left( u _ { 1 } b - u _ { 0 } a \right) / ( b - a ) \text { and } c _ { 2 } = a b \left( u _ { 1 } - u _ { 0 } \right) / ( b - a )
C) u=c2c1/r, where c1=ab(u1u0) /(ba)  and c2=ab(u1bu0a) /(ba) u = c _ { 2 } - c _ { 1 } / r , \text { where } c _ { 1 } = a b \left( u _ { 1 } - u _ { 0 } \right) / ( b - a ) \text { and } c _ { 2 } = a b \left( u _ { 1 } b - u _ { 0 } a \right) / ( b - a )
D) u=c2c1/r, where c1=(u1bu0a) /(ba)  and c2=ab(u1u0) /(ba) u = c _ { 2 } - c _ { 1 } / r \text {, where } c _ { 1 } = \left( u _ { 1 } b - u _ { 0 } a \right) / ( b - a ) \text { and } c _ { 2 } = a b \left( u _ { 1 } - u _ { 0 } \right) / ( b - a )
E) none of the above

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents