Solved

In the Problem , Separate Variables, Using u(r,θ)=R(r)Θ(θ)u ( r , \theta ) = R ( r ) \Theta ( \theta )

Question 28

Multiple Choice

In the problem 2ur2+2rur+1r22uθ2+cotθr2uθ=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 2 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } + \frac { \cot \theta } { r ^ { 2 } } \frac { \partial u } { \partial \theta } = 0 , separate variables, using u(r,θ) =R(r) Θ(θ) u ( r , \theta ) = R ( r ) \Theta ( \theta ) . The resulting problems for RR and Θ\Theta are


A) r2R+2rR+λR=0,R(0) r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } + \lambda R = 0 , R ( 0 ) is bounded; sin(θ) Θ+cos(θ) Θ+λsin(θ) Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
B) r2R+2rRλR=0,R(0) r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } - \lambda R = 0 , R ( 0 ) is bounded; sin(θ) Θ+cos(θ) Θ+λsin(θ) Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
C) r2R+2rRλR=0,R(0) r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } - \lambda R = 0 , R ( 0 ) is bounded; sin(θ) Θ+cos(θ) Θλsin(θ) Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } - \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
D) r2R2rRλR=0,R(0) r ^ { 2 } R ^ { \prime \prime } - 2 r R ^ { \prime } - \lambda R = 0 , R ( 0 ) is bounded; sin(θ) Θ+cos(θ) Θ+λsin(θ) Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
E) r2R+2rRλR=0,R(0) r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } - \lambda R = 0 , R ( 0 ) is bounded; sin(θ) Θcos(θ) Θ+λsin(θ) Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } - \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents