Solved

In the Previous Problem, Apply a Fourier Sine Transform in X

Question 39

Multiple Choice

In the previous problem, apply a Fourier sine transform in x. The new problem for the transform U(a,t) U ( a , t ) is


A) kUt+α2U=kαu0,U(α,0) =0k \frac { \partial U } { \partial t } + \alpha ^ { 2 } U = k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
B) kUtα2U=kαu0,U(α,0) =0k \frac { \partial U } { \partial t } - \alpha ^ { 2 } U = k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
C) Ut+kα2U=kαψ0,U(α,0) =0\frac { \partial U } { \partial t } + k \alpha ^ { 2 } U = k \alpha \psi _ { 0 } , U ( \alpha , 0 ) = 0
D) Utkα2U=kαψ0,U(α,0) =0\frac { \partial U } { \partial t } - k \alpha ^ { 2 } U = k \alpha \psi _ { 0 } , U ( \alpha , 0 ) = 0
E) Ut+α2U=kαu0,U(α,0) =0\frac { \partial U } { \partial t } + \alpha ^ { 2 } U = k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents