Solved

Let the Fourier Integral Representation of F Is
A) f(x)=0{[sin(αx)+sin((3x)α)]/α}dα/πf ( x ) = \int _ { 0 } ^ { \infty } \{ [ \sin ( \alpha x ) + \sin ( ( 3 - x ) \alpha ) ] / \alpha \} d \alpha / \pi

Question 3

Multiple Choice

Let f(x) ={0 if x<02 if 0x30 if x>3}f ( x ) = \left\{ \begin{array} { c c c } 0 & \text { if } & x < 0 \\2 & \text { if } & 0 \leq x \leq 3 \\0 & \text { if } & x > 3\end{array} \right\} . The Fourier integral representation of f is


A) f(x) =0{[sin(αx) +sin((3x) α) ]/α}dα/πf ( x ) = \int _ { 0 } ^ { \infty } \{ [ \sin ( \alpha x ) + \sin ( ( 3 - x ) \alpha ) ] / \alpha \} d \alpha / \pi
B) f(x) =20{[sin(αx) +sin((3x) α) ]/α}dαf ( x ) = 2 \int _ { 0 } ^ { \infty } \{ [ \sin ( \alpha x ) + \sin ( ( 3 - x ) \alpha ) ] / \alpha \} d \alpha
C) f(x) =20{[sin(αx) +sin((3x) α) ]/α}dα/πf ( x ) = 2 \int _ { 0 } ^ { \infty } \{ [ \sin ( \alpha x ) + \sin ( ( 3 - x ) \alpha ) ] / \alpha \} d \alpha / \pi
D) f(x) =0{[sin(ax) +sin((3x) α) ]/α}dαf ( x ) = \int _ { 0 } ^ { \infty } \{ [ \sin ( a x ) + \sin ( ( 3 - x ) \alpha ) ] / \alpha \} d \alpha
E) none of the above

Correct Answer:

verifed

Verified

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents