Question 33
Multiple Choice
Consider the problem c 2 ∂ 2 u ∂ x 2 = ∂ 2 u ∂ t 2 , u ( 0 , t ) = 0 , u ( 1 , t ) = 0 , u ( x , 0 ) = { x if 0 < x < 1 / 2 1 − x if 1 / 2 < x < 1 } c ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = 0 , u ( 1 , t ) = 0 , u ( x , 0 ) = \left\{ \begin{array} { c c c } x & \text { if } & 0 < x < 1 / 2 \\1 - x & \text { if } & 1 / 2 < x < 1\end{array} \right\} c 2 ∂ x 2 ∂ 2 u = ∂ t 2 ∂ 2 u , u ( 0 , t ) = 0 , u ( 1 , t ) = 0 , u ( x , 0 ) = { x 1 − x if if 0 < x < 1/2 1/2 < x < 1 } , u t ( x , 0 ) = g ( x ) u _ { t } ( x , 0 ) = g ( x ) u t ( x , 0 ) = g ( x ) . Replace ∂ 2 u ∂ x 2 \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } ∂ x 2 ∂ 2 u with a central difference approximation with h = 1 / 2 h = 1 / 2 h = 1/2 and ∂ 2 u ∂ x 2 \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } ∂ x 2 ∂ 2 u with a central difference approximation with k = 1 / 2 k = 1 / 2 k = 1/2 . The resulting equation is
A) c 2 [ u ( x + h , t ) − 2 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) − u ( x , t ) ) / k 2 c ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k ^ { 2 } c 2 [ u ( x + h , t ) − 2 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) − u ( x , t ) ) / k 2 B) c 2 [ u ( x + h , t ) − 2 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) + u ( x , t ) ) / k c ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k c 2 [ u ( x + h , t ) − 2 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) + u ( x , t ) ) / k C) c 2 [ u ( x + h , t ) − 2 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) − u ( x , t ) ) / k c ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k c 2 [ u ( x + h , t ) − 2 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) − u ( x , t ) ) / k D) c 2 [ u ( x + h , t ) − 2 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) − u ( x , t ) + u ( x , t − k ) ) / k 2 c ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) + u ( x , t - k ) ) / k ^ { 2 } c 2 [ u ( x + h , t ) − 2 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) − u ( x , t ) + u ( x , t − k ) ) / k 2 E) c 2 [ u ( x + h , t ) − 2 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) − 2 u ( x , t ) + u ( x , t − k ) ) / k 2 c ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - 2 u ( x , t ) + u ( x , t - k ) ) / k ^ { 2 } c 2 [ u ( x + h , t ) − 2 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) − 2 u ( x , t ) + u ( x , t − k ) ) / k 2
Correct Answer:
Verified
Unlock this answer now Get Access to more Verified Answers free of charge
Access For Free