Solved

The Household Problem Is to Solve:
A) maxctadey cMur U=u(ctodap ,cfuture )\max _ { c _ { \text {tadey } } \cdot c _ { \text {Mur } } } U = u \left( c _ { \text {todap } } , c _ { \text {future } } \right)

Question 40

Multiple Choice

The household problem is to solve:


A) maxctadey cMur U=u(ctodap ,cfuture ) \max _ { c _ { \text {tadey } } \cdot c _ { \text {Mur } } } U = u \left( c _ { \text {todap } } , c _ { \text {future } } \right)
B) maxctodoy cMurr ctoday +cfuture (1+R) =Xˉ, subject to U=u(ctoday ,cfuture ) \max _ { c _ { \text {todoy } } \cdot c _ { \text {Murr } } } c _ { \text {today } } + c _ { \text {future } } ( 1 + R ) = \bar { X } \text {, subject to } U = u \left( c _ { \text {today } } , c _ { \text {future } } \right)
C) mincitdoy cMurs U=u(ctoduy ) +βu(cfuture ) , subject to ctodup +cfuture (1+R) =Xˉ\min _ { c _ { \text {itdoy } } \cdot c _ { \text {Murs } } } U = u \left( c _ { \text {toduy } } \right) + \beta u \left( c _ { \text {future } } \right) , \text { subject to } c _ { \text {todup } } + c _ { \text {future } } ( 1 + R ) = \bar { X }
D) maxctodoby ,cAurre U=u(ctodav ) +βu(cfuture ) , subject to \max _{c_{\text {todoby }}, c_{\text {Aurre }}} U=u\left(c_{\text {todav }}\right) +\beta u\left(c_{\text {future }}\right) , \text { subject to }ctoday +cfutare 1+R=Xˉc_{\text {today }}+\frac{c_{\text {futare }}}{1+R}=\bar{X}
E) maxctadoy cMurs U=u(ctoday ) +βu(cfuture ) , subject to ctoday +cfuture (1+R) =ytoday +yfuture (1+R) \max _ { c _ { \text {tadoy } } \cdot c _ { \text {Murs } } } U = u \left( c _ { \text {today } } \right) + \beta u \left( c _ { \text {future } } \right) , \text { subject to } c _ { \text {today } } + c _ { \text {future } } ( 1 + R ) = y _ { \text {today } } + y _ { \text {future } } ( 1 + R )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents