Solved

Select the Parametric Equations Matching with the Following Graph x=15(cosθ+Θsinθ),y=15(sinθΘcosθ)x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )

Question 47

Multiple Choice

Select the parametric equations matching with the following graph.​  Select the parametric equations matching with the following graph.​   ​ A) Involute of circle:  x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta )  , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )   B) Involute of circle:  x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta )  , y = \frac { 1 } { 5 } ( \sin \theta + \Theta \cos \theta )   C) Involute of circle:  x = \frac { 1 } { 5 } ( \cos \Theta - \Theta \sin \theta )  , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )   D) Involute of circle:  x = \frac { 1 } { 5 } ( \cos \theta - \Theta \sin \theta )  , y = \frac { 1 } { 5 } ( \sin \theta + \Theta \cos \theta )   E) Involute of circle:  x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta )  , y = \frac { 1 } { 5 } ( \cos \theta - \Theta \sin \theta )


A) Involute of circle: x=15(cosθ+Θsinθ) ,y=15(sinθΘcosθ) x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )
B) Involute of circle: x=15(cosθ+Θsinθ) ,y=15(sinθ+Θcosθ) x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta + \Theta \cos \theta )
C) Involute of circle: x=15(cosΘΘsinθ) ,y=15(sinθΘcosθ) x = \frac { 1 } { 5 } ( \cos \Theta - \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )
D) Involute of circle: x=15(cosθΘsinθ) ,y=15(sinθ+Θcosθ) x = \frac { 1 } { 5 } ( \cos \theta - \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta + \Theta \cos \theta )
E) Involute of circle: x=15(cosθ+Θsinθ) ,y=15(cosθΘsinθ) x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \cos \theta - \Theta \sin \theta )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents