Solved

Consider the Functions Given by F(x)= X + 3 and F-1(x)=

Question 48

Multiple Choice

Consider the functions given by f(x) = x + 3 and f-1(x) = x - 3.Evaluate f(f-1(x) ) and f-1(f(x) ) for the indicated values of x.What can you conclude about the functions
x10449f(f1(x) ) f1(f(x) ) \begin{array} { | l | l | l | l | l | } \hline x & - 1 & 0 & 4 & 49 \\\hline f \left( f ^ { - 1 } ( x ) \right) & & & & \\\hline f ^ { - 1 } ( f ( x ) ) & & & & \\\hline\end{array}


A) x10449f(f1(x) ) 10449f1(f(x) ) 10449\begin{array} { | l | l | l | l | l | } \hline x & - 1 & 0 & 4 & 49 \\\hline f \left( f ^ { - 1 } ( x ) \right) & - 1 & 0 & - 4 & - 49 \\\hline f ^ { - 1 } ( f ( x ) ) & - 1 & 0 & 4 & 49 \\\hline\end{array} We can conclude that, both the functions have the same value for negative variables
B) x10449f(f1(x) ) 10449f1(f(x) ) 10449\begin{array} { | l | l | l | l | l | } \hline x & - 1 & 0 & 4 & 49 \\\hline f \left( f ^ { - 1 } ( x ) \right) & - 1 & 0 & 4 & 49 \\\hline f ^ { - 1 } ( f ( x ) ) & - 1 & 0 & 4 & 49 \\\hline\end{array} We can conclude that, both the functions have the same value
C) x10449f(f1(x) ) 10449f1(f(x) ) 10449\begin{array} { | l | l | l | l | l | } \hline x & - 1 & 0 & 4 & 49 \\\hline f \left( f ^ { - 1 } ( x ) \right) & - 1 & 0 & 4 & 49 \\\hline f ^ { - 1 } ( f ( x ) ) & - 1 & 0 & - 4 & - 49 \\\hline\end{array} We can conclude that, both the functions have the same value for negative variables.
D) x10449f(f1(x) ) 10449f1(f(x) ) 10449\begin{array} { | l | l | l | l | l | } \hline x & - 1 & 0 & 4 & 49 \\\hline f \left( f ^ { - 1 } ( x ) \right) & - 1 & 0 & - 4 & 49 \\\hline f ^ { - 1 } ( f ( x ) ) & - 1 & 0 & 4 & - 49 \\\hline\end{array} We can conclude that, both the functions are opposite of each other.
E) x10449f(f1(x) ) 10449f1(f(x) ) 10449\begin{array} { | l | l | l | l | l | } \hline x & - 1 & 0 & 4 & 49 \\\hline f \left( f ^ { - 1 } ( x ) \right) & - 1 & 0 & 4 & - 49 \\\hline f ^ { - 1 } ( f ( x ) ) & - 1 & 0 & - 4 & 49 \\\hline\end{array}
We can conclude that, both the functions are opposite of each other.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents