Solved

Find the Point (X,y)on the Unit Circle That Corresponds to the Real

Question 2

Multiple Choice

Find the point (x,y) on the unit circle that corresponds to the real number t.​ t=10π3t = \frac { 10 \pi } { 3 }


A) t=10π3t = \frac { 10 \pi } { 3 } corresponds to the point (32,12) \left( - \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right) .
B) t=10π3t = \frac { 10 \pi } { 3 } corresponds to the point (12,32) \left( \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) .
C) t=10π3t = \frac { 10 \pi } { 3 } corresponds to the point (32,12) \left( - \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right) .
D) t=10π3t = \frac { 10 \pi } { 3 } corresponds to the point (12,32) \left( - \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) .
E) t=10π3t = \frac { 10 \pi } { 3 } corresponds to the point (12,32) \left( - \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right) .

Correct Answer:

verifed

Verified

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents