Solved

Use a Graphing Utility to Determine Which of the Trigonometric cscxsinxcotx\frac { \csc x - \sin x } { \cot x }

Question 57

Multiple Choice

Use a graphing utility to determine which of the trigonometric functions is equal to the following expression. cscxsinxcotx\frac { \csc x - \sin x } { \cot x }


A) ​ y = cos x
 Use a graphing utility to determine which of the trigonometric functions is equal to the following expression.  \frac { \csc x - \sin x } { \cot x }  A) ​ y = cos x   B) ​ y = sin x 2 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 2 C) ​ y = csc x   D) ​ y = cot x 4 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 E) ​ y = tan x
B) ​ y = sin x
2
- 2π  Use a graphing utility to determine which of the trigonometric functions is equal to the following expression.  \frac { \csc x - \sin x } { \cot x }  A) ​ y = cos x   B) ​ y = sin x 2 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 2 C) ​ y = csc x   D) ​ y = cot x 4 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 E) ​ y = tan x
Xscl =π2X _ { \text {scl } } = \frac { \pi } { 2 }
- 2
C) ​ y = csc x
 Use a graphing utility to determine which of the trigonometric functions is equal to the following expression.  \frac { \csc x - \sin x } { \cot x }  A) ​ y = cos x   B) ​ y = sin x 2 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 2 C) ​ y = csc x   D) ​ y = cot x 4 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 E) ​ y = tan x
D) ​ y = cot x
4
- 2π  Use a graphing utility to determine which of the trigonometric functions is equal to the following expression.  \frac { \csc x - \sin x } { \cot x }  A) ​ y = cos x   B) ​ y = sin x 2 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 2 C) ​ y = csc x   D) ​ y = cot x 4 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 E) ​ y = tan x
Xscl =π2X _ { \text {scl } } = \frac { \pi } { 2 }
- 4
E) ​ y = tan x
 Use a graphing utility to determine which of the trigonometric functions is equal to the following expression.  \frac { \csc x - \sin x } { \cot x }  A) ​ y = cos x   B) ​ y = sin x 2 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 2 C) ​ y = csc x   D) ​ y = cot x 4 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 E) ​ y = tan x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents