Solved

The Area of a Circle with Radius 1 Is π 1x2\sqrt { 1 - x ^ { 2 } }

Question 18

True/False

The area of a circle with radius 1 is π. If f(x) = 1x2\sqrt { 1 - x ^ { 2 } } gives the top half of this circle, as illustrated below, use the second Taylor polynomial of f(x) at x = 0 to find an approximate value for π. Is the following correct? p2(x)=112x2π211(112x2)dx=53 so π103\begin{array} { l } \mathrm { p } 2 ( \mathrm { x } ) = 1 - \frac { 1 } { 2 } \mathrm { x } ^ { 2 } \\\frac { \pi } { 2 } \approx \int _ { - 1 } ^ { 1 } \left( 1 - \frac { 1 } { 2 } \mathrm { x } ^ { 2 } \right) \mathrm { dx } = \frac { 5 } { 3 } \text { so } \pi \approx \frac { 10 } { 3 }\end{array}  The area of a circle with radius 1 is π. If f(x) =  \sqrt { 1 - x ^ { 2 } }  gives the top half of this circle, as illustrated below, use the second Taylor polynomial of f(x) at x = 0 to find an approximate value for π. Is the following correct?  \begin{array} { l }  \mathrm { p } 2 ( \mathrm { x } ) = 1 - \frac { 1 } { 2 } \mathrm { x } ^ { 2 } \\ \frac { \pi } { 2 } \approx \int _ { - 1 } ^ { 1 } \left( 1 - \frac { 1 } { 2 } \mathrm { x } ^ { 2 } \right) \mathrm { dx } = \frac { 5 } { 3 } \text { so } \pi \approx \frac { 10 } { 3 } \end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents