Solved

In the Figure Below, the Region Enclosed by the Curves 4x\frac { 4 } { x }

Question 92

Multiple Choice

In the figure below, the region enclosed by the curves y = - 4x\frac { 4 } { x } , y = -x, and y = -x + 3 is shown. Set up an integral or sum of integrals to find the area of the shaded region. (Do not calculate the area.)  In the figure below, the region enclosed by the curves y = -  \frac { 4 } { x }  , y = -x, and y = -x + 3 is shown. Set up an integral or sum of integrals to find the area of the shaded region. (Do not calculate the area.)    A)   \int _ { - 2 } ^ { - 1 } \left( - \frac { 4 } { x } + x \right)  d x  +  \int _ { - 1 } ^ { 2 } 3 d x  +  \int _ { 2 } ^ { 4 } \left( - x + 3 + \frac { 4 } { x } \right)  d x  B)   \int _ { - 2 } ^ { 2 } 3 \mathrm { dx } \int _ { 2 } ^ { 4 } \left( - x + 3 - \frac { 4 } { x } \right)  \mathrm { dx }  C)   \int _ { - 2 } ^ { 0 } \left( - \frac { 4 } { x } + x \right)  d x  +  \int _ { 0 } ^ { 2 } \left( - x + 3 + \frac { 4 } { x } \right)  d x  D)   \int _ { - 2 } ^ { 4 } 3 d x  E)  none of these


A) 21(4x+x) dx\int _ { - 2 } ^ { - 1 } \left( - \frac { 4 } { x } + x \right) d x + 123dx\int _ { - 1 } ^ { 2 } 3 d x + 24(x+3+4x) dx\int _ { 2 } ^ { 4 } \left( - x + 3 + \frac { 4 } { x } \right) d x
B) 223dx24(x+34x) dx\int _ { - 2 } ^ { 2 } 3 \mathrm { dx } \int _ { 2 } ^ { 4 } \left( - x + 3 - \frac { 4 } { x } \right) \mathrm { dx }
C) 20(4x+x) dx\int _ { - 2 } ^ { 0 } \left( - \frac { 4 } { x } + x \right) d x + 02(x+3+4x) dx\int _ { 0 } ^ { 2 } \left( - x + 3 + \frac { 4 } { x } \right) d x
D) 243dx\int _ { - 2 } ^ { 4 } 3 d x
E) none of these

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents