Solved

Let P ( T ) Be the Point on the Unit

Question 11

Multiple Choice

Let P ( t ) be the point on the unit circle U that corresponds to t. If P ( t ) has the coordinates (2129,2029) \left( \frac { 21 } { 29 } , \frac { 20 } { 29 } \right) , find P(t+π) P ( t + \pi ) , P(tπ) P ( t - \pi ) , P(t) P ( - t ) , P(tπ) P ( - t - \pi ) .


A) P(t+π) =(2129,2029) ,P(πt) =(2129,2029) P ( t + \pi ) = \left( - \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( \pi - t ) = \left( - \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) P(t) =(2129,2029) ,P(tπ) =(2129,2029) P ( - t ) = \left( \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( - t - \pi ) = \left( \frac { 21 } { 29 } , \frac { 20 } { 29 } \right)
B) P(t+π) =(2129,2029) ,P(πt) =(2129,2029) P ( t + \pi ) = \left( \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( \pi - t ) = \left( - \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) P(t) =(2129,2029) ,P(tπ) =(2129,2029) P ( - t ) = \left( \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( - t - \pi ) = \left( - \frac { 21 } { 29 } , \frac { 20 } { 29 } \right)
C) P(t+π) =(2129,2029) ,P(πt) =(2129,2029) P ( t + \pi ) = \left( - \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( \pi - t ) = \left( - \frac { 21 } { 29 } , \frac { 20 } { 29 } \right) P(t) =(2129,2029) ,P(tπ) =(2129,2029) P ( - t ) = \left( \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( - t - \pi ) = \left( - \frac { 21 } { 29 } , \frac { 20 } { 29 } \right)
D) P(t+π) =(2129,2029) ,P(πt) =(2129,2029) P ( t + \pi ) = \left( - \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( \pi - t ) = \left( \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) P(t) =(2129,2029) ,P(tπ) =(2129,2029) P ( - t ) = \left( \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( - t - \pi ) = \left( \frac { 21 } { 29 } , \frac { 20 } { 29 } \right)
E) P(t+π) =(2129,2029) ,P(πt) =(2129,2029) P ( t + \pi ) = \left( \frac { 21 } { 29 } , \frac { 20 } { 29 } \right) , P ( \pi - t ) = \left( - \frac { 21 } { 29 } , \frac { 20 } { 29 } \right) P(t) =(2129,2029) ,P(tπ) =(2129,2029) P ( - t ) = \left( \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( - t - \pi ) = \left( - \frac { 21 } { 29 } , \frac { 20 } { 29 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents