Solved

Graph the Hyperbola y24x2=4y ^ { 2 } - 4 x ^ { 2 } = 4

Question 18

Multiple Choice

Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes. y24x2=4y ^ { 2 } - 4 x ^ { 2 } = 4


A)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4  A)    vertices:  ( 0 , \pm 2 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)    vertices:  ( 0 , \pm 1 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)     vertices: ( \pm 2,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)     vertices: ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 37 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)    vertices:  ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  . vertices: (0,±2) ( 0 , \pm 2 ) ;
Foci: (0,±5) ( 0 , \pm \sqrt { 5 } ) ;
Length of transverse axis: 4;
Length of conjugate axis: 2;
Eccentricity: 52\frac { \sqrt { 5 } } { 2 }
Asymptotes: y=±2xy = \pm 2 x .
B)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4  A)    vertices:  ( 0 , \pm 2 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)    vertices:  ( 0 , \pm 1 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)     vertices: ( \pm 2,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)     vertices: ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 37 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)    vertices:  ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  . vertices: (0,±1) ( 0 , \pm 1 ) ;
Foci: (0,±5) ( 0 , \pm \sqrt { 5 } ) ;
Length of transverse axis: 2;
Length of conjugate axis: 4;
Eccentricity: 5\sqrt { 5 } ;
Asymptotes: y=±12xy = \pm \frac { 1 } { 2 } x .
C)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4  A)    vertices:  ( 0 , \pm 2 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)    vertices:  ( 0 , \pm 1 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)     vertices: ( \pm 2,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)     vertices: ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 37 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)    vertices:  ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  . vertices: (±2,0) ( \pm 2,0 ) ;
Foci: (±5,0) ( \pm \sqrt { 5 } , 0 ) ;
Length of transverse axis: 4;
Length of conjugate axis: 2;
Eccentricity: 52\frac { \sqrt { 5 } } { 2 }
Asymptotes: y=±12xy = \pm \frac { 1 } { 2 } x .
D)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4  A)    vertices:  ( 0 , \pm 2 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)    vertices:  ( 0 , \pm 1 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)     vertices: ( \pm 2,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)     vertices: ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 37 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)    vertices:  ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  . vertices: (±1,0) ( \pm 1,0 ) ;
Foci: (±37,0) ( \pm \sqrt { 37 } , 0 ) ;
Length of transverse axis: 2;
Length of conjugate axis: 12;
Eccentricity: 37\sqrt { 37 } ;
Asymptotes: y=±37xy = \pm 37 x .
E)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4  A)    vertices:  ( 0 , \pm 2 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)    vertices:  ( 0 , \pm 1 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)     vertices: ( \pm 2,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)     vertices: ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 37 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)    vertices:  ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  . vertices: (±1,0) ( \pm 1,0 ) ;
Foci: (±5,0) ( \pm \sqrt { 5 } , 0 ) ;
Length of transverse axis: 2;
Length of conjugate axis: 4;
Eccentricity: 5\sqrt { 5 } Asymptotes: y=±2xy = \pm 2 x .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents