Solved

Using the ADL(1,1)regression Yt = ?0 + ?1Yt-1 γ1\gamma _ { 1 }

Question 28

Short Answer

Using the ADL(1,1)regression Yt = ?0 + ?1Yt-1 + γ1\gamma _ { 1 } Xt-1 + ut, the ARCH model for the regression error assumes that ut is normally distributed with mean zero and variance σt2\sigma _ { t } ^ { 2 } , where
A) σt2=α0+α1ut12+α2ut22++αputp2\sigma _ { t } ^ { 2 } = \alpha _ { 0 } + \alpha _ { 1 } u _ { t - 1 } ^ { 2 } + \alpha _ { 2 } u _ { t - 2 } ^ { 2 } + \ldots + \alpha _ { p } u _ { t - p } ^ { 2 } .
B) σt2=ut12++utp2+φ1σt12++φqσtq2\sigma _ { t } ^ { 2 } = u _ { t - 1 } ^ { 2 } + \ldots + u _ { t - p } ^ { 2 } + \varphi _ { 1 } \sigma _ { t - 1 } ^ { 2 } + \ldots + \varphi _ { q } \sigma _ { t - q } ^ { 2 } .
C) σt2=φ1σt12++φqσtq2\sigma _ { t } ^ { 2 } = \varphi 1 \sigma _ { t - 1 } ^ { 2 } + \ldots + \varphi _ { q } \sigma _ { t - q } ^ { 2 } .
D) σt2=α0+α1ut12++αputp2+φ1σt12++φqσtq2\sigma _ { t } ^ { 2 } = \alpha _ { 0 } + \alpha _ { 1 } u _ { t - 1 } ^ { 2 } + \ldots + \alpha _ { p } u _ { t - p } ^ { 2 } + \varphi _ { 1 } \sigma _ { t - 1 } ^ { 2 } + \ldots + \varphi _ { q } \sigma _ { t - q } ^ { 2 } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents