Solved

It Is Not Hard, but Tedious, to Derive the OLS

Question 41

Essay

It is not hard, but tedious, to derive the OLS formulae for the slope coefficient in the multiple regression case with two explanatory variables. The formula for the first regression slope is β^1=i=1nyix1ii=1nx2i2i=1nyix2ii=1nx1ix2ii=1nx1i2i=1nx2i2(i=1nx1ix2i)2\hat { \beta } _ { 1 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } } (small letters refer to deviations from means as in zi=ZiZˉz _ { i } = Z _ { i } - \bar { Z } ).
Show that this formula reduces to the slope coefficient for the linear regression model with one regressor if the sample correlation between the two explanatory variables is zero. Given this result, what can you say about the effect of omitting the second explanatory variable from the regression?

Correct Answer:

verifed

Verified

Divide each of the four terms by blured image to get...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents