(Continuation from Chapter 4)Sir Francis Galton, a cousin of James Darwin, examined the relationship between the height of children and their parents towards the end of the 19th century. It is from this study that the name "regression" originated. You decide to update his findings by collecting data from 110 college students, and estimate the following relationship: = 19.6 + 0.73 × Midparh, R2 = 0.45, SER = 2.0
(7.2)(0.10)
where Studenth is the height of students in inches, and Midparh is the average of the parental heights. Values in parentheses are heteroskedasticity robust standard errors. (Following Galton's methodology, both variables were adjusted so that the average female height was equal to the average male height.)
(a)Test for the statistical significance of the slope coefficient.
(b)If children, on average, were expected to be of the same height as their parents, then this would imply two hypotheses, one for the slope and one for the intercept.
(i)What should the null hypothesis be for the intercept? Calculate the relevant t-statistic and carry out the hypothesis test at the 1% level.
(ii)What should the null hypothesis be for the slope? Calculate the relevant t-statistic and carry out the hypothesis test at the 5% level.
(c)Can you reject the null hypothesis that the regression R2 is zero?
(d)Construct a 95% confidence interval for a one inch increase in the average of parental height.
Correct Answer:
Verified
View Answer
Unlock this answer now
Get Access to more Verified Answers free of charge
Q30: (Continuation from Chapter 4)At a recent
Q31: Using the textbook example of 420 California
Q32: The homoskedastic normal regression assumptions are all
Q33: Using 143 observations, assume that you had
Q34: (Continuation from Chapter 4, number 5)You
Q36: You have collected data for the
Q37: You recall from one of your
Q38: (continuation from Chapter 4, number 3)You
Q39: (Continuation of the Purchasing Power Parity
Q40: You have obtained measurements of height
Unlock this Answer For Free Now!
View this answer and more for free by performing one of the following actions
Scan the QR code to install the App and get 2 free unlocks
Unlock quizzes for free by uploading documents